
1

Efficient GPU computation of large protein

Solvent-Excluded Surface

Cyprien Plateau–Holleville, Maxime Maria, Stéphane Mérillou, Matthieu Montes

Fig. 1: Path-traced images of the entire HIV-1 capsid’s (PDB: 3J3Q) Solvent-Excluded Surface. It is composed of more than

2.4M atoms and its surface is computed in 700ms on an NVIDIA RTX 2080 with our method. As shown in the right image,

the surface is fully defined and can be rendered with a transmissive material giving an overview of its inner part.

Abstract—The Solvent-Excluded Surface (SES) is an essential representation of molecules which is massively used in molecular modeling and

drug discovery since it represents the interacting surface between molecules. Based on its properties, it supports the visualization of both large

scale shapes and details of molecules. While several methods targeted its computation, the ability to process large molecular structures to address

the introduction of big complex analysis while leveraging the massively parallel architecture of GPUs has remained a challenge. This is mostly

caused by the need for consequent memory allocation or by the complexity of the parallelization of its processing. In this paper, we leverage the

last theoretical advances made for the depiction of the SES to provide fast analytical computation with low impact on memory. We show that our

method is able to compute the complete surface while handling large molecular complexes with competitive computation time costs compared to

previous works.

Index Terms—Scientific visualization, Massively parallel algorithms.

✦

1 Introduction

Computer science, and especially computer graphics, is widely

used by computational biochemists to support molecular

modeling, drug discovery and design applications. From the

development of enhanced shading to the implementation of

hardware accelerated computation tools passing by specialized

user interfaces, computer graphics research contributed many times

to the improvements of molecular visualization software [1].

With the recent developments in molecular simulation and ex-

perimental structure resolution techniques, molecular datasets now

include larger and more complex structures including molecular

motion. Their studies are thus challenging the available tools in

• Cyprien Plateau–Holleville, Maxime Maria and Stéphane Mérillou are with

the XLIM Laboratory, UMR CNRS 7252, University of Limoges, France,

E-mail: cyprien.plateauholleville@unilim.fr, maxime.maria@unilim.fr,

stephane.merillou@unilim.fr

• Matthieu Montes is with the GBCM - Laboratoire Génomique,

Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire

National des Arts et Métiers, Hésam Université, France and Institut

Universitaire de France (IUF). E-mail: matthieu.montes@cnam.fr

terms of memory, performance, and visualization clarity. Even

if recent works were able to leverage the repetitive patterns in

complex synthetic systems to provide visualization from molecular

to cellular structures and thus demonstrate the ability to handle very

large amounts of data [2], [3], they are not compatible with motion

and molecular dynamics simulation data. Indeed, motion induces

structural conformational changes in the molecular scene which rely

on atom-level forces prohibiting the use of procedural generation

or instancing. Additionally, recent developments in HPC allowed

the generation of massive simulations at the atomic scale [4] that

would benefit from appropriate illustration methods.

Scientific visualization has been oriented toward the develop-

ment of tools supporting interactive analysis. While giving valid and

insightful visualization is a mandatory feature of scientific software,

the addition of high-quality illustration techniques supports both the

understanding and the popularization of scientific knowledge [5],

[6]. However, the adoption of the last computer graphics strategies

and the creation of dedicated ones to handle the targeted domain’s

concepts are required to deliver adequate methods.

Richards [7] introduced the Solvent-Accessible Surface (SAS)

and the Solvent-Excluded Surface (SES), both built from the atomic

2

Fig. 2: The different molecular surfaces introduced by Richards [7].

Both the SAS and the SES describe the probe’s interaction with the

vdW surface and give insights on its interactions with the protein.

structure of a molecule using a spherical probe representing the

solvent. As illustrated in fig. 2, the spherical probe is rolling over

the van der Waals (vdW) surface and describes the SAS as the

path of its center, an inflated version of the vdW surface, and

the SES as its reachable frontier. While the SAS is especially

studied for its area giving hydrophobia insights [8], the SES is

the interacting surface in molecular interactions which guides the

analysis of molecular complexes (protein-small molecule, protein-

protein, etc.). For instance, it can support the identification of

cavities based on the extracted geometry [9].

Several methods showed the ability for fast computation and

visualization of the analytic exterior SES. However, the most used

softwares [10]–[12] only offer triangulated approximation of the

surface which level of detail is strongly linked to its memory

consumption. This may be explained by the complexity to handle

large structures and the complete surface, especially on applications

targeting GPU computation and a wide variety of hardware. Indeed,

the embedding of the geometry in the restricted GPU memory is a

challenge strengthened by the complexity of its construction. Even

if recent works [13] have been conducted to allow the handling

of large proteins on graphic hardware, this was often at the cost

of additional computation time and without the complete surface

acquisition. This is not only limiting the support of large structures

on dedicated software, but also the availability of these methods.

This paper presents a method for GPU computation of the SES

with reduced memory consumption, without trade-offs between

surface quality and processing time. Our contributions are:

• Based on the last SES depiction [8], we provide a dedicated

data structure targeting a compute-over-store pattern for

both memory and computation efficiency.

• We tackle one of the main memory consumption issues in

previous works by leveraging a classification scheme which

is strongly reducing the runtime memory footprint.

• To overcome the additional computation induced by mem-

ory footprint reduction features, we propose significant

improvements to the parallelism of SES processing steps

that we identified as important computation bottlenecks.

• We show that thanks to our development, the computation

of the complete surface can be made in competitive

computation time and without strong memory footprint

which was not possible before.

To our knowledge, our method is the first to be able of fast GPU

computation of large molecular structures complete surface. The

data produced could thus be employed for various processes on the

GPU such as area and volume computation, geometry processing,

or illustration. We study its use for illustrative rendering benefiting

from the quality and clarity of the generated surface, as illustrated

in fig. 10, and decreased surface acquisition times. Finally, we show

that the last developments made in the analytical depiction of the

SES [8] suits especially well the rendering of this surface thanks to

its implicit singularity handling.

In the following sections, we give the previous works on

SES computation which are followed by the surface geometric

definition. We then present the key steps of our algorithm and its

GPU-oriented optimizations. Finally, we provide an analysis of the

pipeline performance, its limitations and conclude this paper.

2 Related works

Since the first studies made by Richards [7] and Connolly [14],

many works improved the SES computation under different

orientations. To provide a reliable presentation of the related works,

we propose to group these methods by their goals. We first present

the several works providing fundamental approach to the depiction

of the surface which are followed by those focusing on its fast

approximating and analytical generation. For more information

regarding visualization of biomolecular data, we orient the reader

toward previous wider studies [15].

Fundamental works and analytic depiction. Based on

Richards [7] and Connolly [14]’s works, several algorithms have

been developed mostly relying on the links between the SES and

the SAS. Reduced Surface [16] is a sequential algorithm producing

an U-shape [17] structural representation which has been widely

used for its robustness and availability in the software MSMS [16].

It is based on an iterative computation of the structure validating

and appending part of it. It has then been leveraged to allow

rebuilding from previous computation [18]. The same year, another

structural algorithm, Contour-Buildup [19], has been presented. It

relies on SAS contours construction by modifying incrementally its

arcs based on intersection points. In Connolly [14]’s analysis, the

processing of the surface requires to handle singularities. Quan &

Stamm [8] presented an analytic Signed Distance Function (SDF)

representation of the surface, implicitly handling singularities for

a more precise calculation. This representation has then been

leveraged to offer accurate meshing of the surface [20].

Approximating applications. While several fundamental

works have presented analytical studies of the surface, the need for

fast visualization led to the development of approximating and/or

discrete space methods mostly based on a signed distance field. The

latter can be built by classifying every voxel depending on their

belonging to the vdW surface or the SAS. It allows the introduction

of complex surfaces such as the Ligand-Excluded Surface [21],

which takes into account the geometry of the ligand for the surface

approximation. Hermosilla et al. [22] presented an interactively

refining method based on the ray-marching of a grid, which has

then been leveraged by Martinez et al. [23] to provide a stand-

alone library for SES mesh GPU computation. Parulek et al. [24]

presented an SDF representation of the SES, which can directly

be ray-casted but suffered from numerical errors. Bruckner [25]

proposed a Gaussian surface-based approach that enables on-the-fly

computation for real-time visualization of large molecular complex

surface thanks to its simpler structure. However, it does not offer

the SES features and insights.

Analytic exterior molecular surface applications. Analytic

computation of the surface has been leveraged several times to

provide an accurate representation of the exterior molecular surface

3

Fig. 3: Rendering of the SES of a molecule (PDB: 3DIK) with emphasized patches. The different types of patches, spherical convex %+,

spherical concave %− , toroidal segment %C and complete circle %C 5 compose the complete SES and are defined in section 3.

after its structural computation. This is achieved by hiding unwanted

geometry parts to the user within the surface. This is made for

faster rendering but is thus not compatible with the visualization

of the inside of the surface. Krone et al. [26] proposed a Reduced-

Surface [16] based method providing interactive visualization

by ray-casting. This work has then been improved with a GPU

implementation of Reduced-Surface [27] and Contour-Buildup [28],

allowing the parallelization of both algorithms. However, the first

method suffers from artifacts due to its view-dependent nature while

the second requires consequent memory allocation, limiting its use

for large structures. Schäfer et al. [13] demonstrated a reduced

allocation scheme at the cost of a slower computation.

Analytic complete surface applications. While the exterior

molecular surface computation can be sufficient for some ap-

plications, users can need the complete surface to obtain more

information such as tunnels and pocket visualization. For this

purpose, Kauker et al. [29] presented a framework allowing

transparent visualization by using Reduced Surface’s primitives

and cutting planes. This allowed to provide a rendering of the

complete exterior molecular surface but not its inner part which

can remain inside the volume. Jurcik et al. [30] proposed a method

relying on a GPU implementation of Contour-Buildup [19], ray-

casting, and cutting geometries which suffered from numerical

errors and difficulties to handle large structures. Manak et al. [31]

proposed a method based on Apollonius diagram, the Voronoı̈

diagram of spheres and Euclidean distance, allowing fast probe

radius update but requiring heavy pre-computation time. Finally,

Rau et al. [32] presented an improved CPU ray-tracing method

based on Contour-Buildup handling large complex at the cost of

an order of magnitude longer computation times compared to the

original GPU implementation.

The fast computation of the complete SES remains a challenge.

We identified that the main difficulties are closely related to the

amount of memory that can be needed to store the data structure,

and the complexity to parallelize its exploration. In this paper, we

propose to tackle both issues based on the last theoretical and

technical advances made in SES depiction and GPU architectures

as well as our improvements to the processing of the surface parts.

3 Geometric definition

Before going into the details of the SES computation, we recall the

theory at the basis of our method, and how it can be leveraged for

rendering purposes. The nomenclature used throughout this article

are listed in table 1.

Symbol Signification

M A molecule.

08 , 28 , A8 , N (08)
The 8th atom, its center, vdW radius and
neighborhood.

A? The probe radius.

�8 9 , 28 9 , A8 9 , =8 9
A SAS circle between 08 and 0 9 , its center,
radius and normal.

I The set of intersected SAS circles.

G, X An SAS intersection and their set.

X (�)
The set of SAS intersections of a given
SAS circle.

%+ A convex patch.

%− ,) A concave patch and its tetrahedron.

%C , %C 5 Segment and full toroidal patches.

TABLE 1: Nomenclature

3.1 SES patches

To offer a homogeneous presentation, we rely on Quan &

Stamm [8]’s depiction to present the parts of the surface, refer to as

patches. Its implicit geometric singularity handling and structural

simplification make it an appropriate foundational design which is

also adequate for rendering purposes.

As previously stated, the SES is described as the interaction

surface of a spherical probe rolling on the vdW surface. The latter

is composed of spheres defined by the center 28 and vdW radius [7]

A8 of every atom 08 belonging to the molecule M. The surface

accessible to the probe is the SAS and is defined as the union of

the inflated vdW spheres where every atom’s radius is increased

by the probe’s radius A? . As demonstrated by Quan & Stamm [8],

the individual component types of the SES can be described as

distance functions from their corresponding parts on the SAS. They

aim at giving the distance from a point ? ∈ R3 to the surface which

can be used for rendering with sphere-tracing [33] for instance. In

this paper, we refer to values less than 0 as inside the surface and

values greater than 0 as outside of the surface. An illustration of

these patches for a given molecule is provided in fig. 3. They are

based on SAS geometry bits created from the intersection of SAS

spheres: SAS circles and intersections. SAS circles, noted �, are

small circles delimiting the intersection of two SAS spheres while

SAS intersections, noted G, are points coming from the intersection

of three SAS spheres or two SAS circles.

Convex Spherical Patches P+. As illustrated in fig. 4, a SAS

sphere can be intersected by other spheres. The resulting geometry

4

Fig. 4: Illustration of a convex patch %+. We can notice its

corresponding set of small circles at the basis of its composing

sector list. In red: convex patch %+. In green: full SAS circles. In

yellow: intersected SAS circles. In blue: �8 90 , a circle buried in 0 91 ,

which does not contribute to the surface.

is a partial sphere which frontier is derived from intersecting SAS

circles delimiting its surface. Then, the point ? is on the SES if it

is on the vdW sphere and if it does not belong to an SAS circle

? ∉�8 9 , ∀0 9 ∈ N (08) with N (08) as 08’s neighborhood creating

SAS circles �8 9 . This test was originally performed by maintaining

circle intersection topology in Quan & Stamm [20]’s data structure.

However, such construction is computationally expensive as well

as being heavy. To alleviate this cost, we rely on per-patch sets

of spherical sector as used by previous works [32]. A sector is

composed of an orientation from the sphere’s center and an angle

derived from its corresponding circle. It can then be used to test if

? is part of the surface and allow to simplify Quan & Stamm [20]’s

data structure. Ours is composed of the atom position and radius

as well as a list of vectors and radii representing its sectors.

Toroidal Patches PC and PC 5 . As depicted in fig. 5, the

intersection of two SAS spheres is an SAS circle. If ? is located

in the triangle △
(

?′282 9

)

described by both 08 and 0 9 centers and

?′ the projection of ? onto their resulting SAS circle �8 9 , then it

belongs to an SES toroidal patch %C . Hence, its distance 3 (%C , ?)

to the SES is its signed distance to ?′ adding A?:

3 (%C , ?) = −||?
′ − ? | | + A? , ? ∈ △

(

?′282 9

)

?′ = 28 9 + A8 9
E

| |E | |

E = ? + (
(

28 9 − ?
)

· =8 9)=8 9 − 28 9

(1)

with 28 9 , =8 9 and A8 9 as respectively the center, normal and radius

of �8 9 and E as the vector from 28 9 to ?′.

Circles become segments when intersected by other circles.

The SDF remains the same but its enclosing shape is bounded by

G; and G<, the two bounding intersections creating an arc that must

be taken into account during evaluation. This can be achieved by

testing if ?′ is located between G; and G<:

∡

(

G; − 28 9 , ?
′ − 28 9

)

< ∡
(

G; − 28 9 , G
< − 28 9

)

(2)

with ∡ (®E, ®F) as the angle between ®E and ®F. To ease the differen-

tiation between both shapes, we use %C 5 for patches belonging

to complete circles and %C for those belonging to segments,

respectively in green and yellow in fig. 5.

In contrast with previous depictions [14], this representation

is not suffering from the spindle torus singularity and does not

require the use of a solver leading to instabilities [32]. Moreover,

while previous works store cutting geometry planes, we use

Quan & Stamm [20]’s data structure to avoid these additional

costs on memory and computation. It was originally including,

in addition to both atoms and intersections indices, the circle

center and radius as well as the angle of the segment. Based on

the presented equations these data can be quickly recomputed on

demand with both atoms and intersections. Our data structure for

%C and %C 5 is then simplified by only storing the two atoms indices

as well as the intersection indices for %C .

Concave Spherical Patches P− . The intersection of three SAS

spheres leads to one or two SAS intersections, as illustrated in

fig. 6. ? belongs to an SES concave spherical patch %− if it is

located within the SAS cavity and is not belonging to any other

type of patch. In such context, the point is then positioned in the

union of every tetrahedron) described by the three atoms centers

28 , 2 9 , 2: and their resulting SAS intersection point G ∈ X, with X

as the set containing all intersections belonging toM.

The distance between ? and the SES 3 (%− , ?) is the distance

to the closest probe sphere of radius A? . While this allows to

completely define the SES cavity, it is not sufficiently compact

to fit a rendering algorithm. We can then add that, deriving these

statements, a concave patch %E
− can be more compactly rendered

as a sphere centered in its SAS intersection GE , of radius A? ,

intersected by the three planes describing the sides of its tetrahedron

) E and by refining the distance based on neighboring %− . Moreover,

such test is only required if the sphere is intersecting the plane

of) E described by 28 , 2 9 and 2: [16], [31]. In our data structure,

these patches are represented by their position, the indices of

their corresponding atoms, and the position of their potential

neighbors. This is heavier than Quan & Stamm [20]’s data structure

since we directly provide %−’s neighbors to meet rendering speed

requirements as in previous works [28], [31].

By using our data structures, we are able to render the SES

without additional data or preprocessing. Then, they represent the

target of the pipeline described in the following sections.

Fig. 5: Illustration of toroidal patches %C and %C 5 . On the illus-

tration, we can see three toroidal patches and their corresponding

SAS structures. Both kinds of patches are defined by the SAS circle

coming from the intersection of the SAS spheres of their atoms,

while %C are also bounded by their corresponding intersections. In

green: a complete circle patch %C 5 with its circle. In yellow: two

segments patches %C on the same circle.

5

Fig. 6: Illustration of the concave patches %− . We can notice two

intersecting concave patches %− and their respective tetrahedra. As

illustrated, two %−’s spheres can intersect resulting in a hole in the

surface.

3.2 Computation of circles and intersections

To acquire the previously presented patches, several key geometry

parts need to be computed. We chose to rely on the set of equations

provided by Totrov et al. [19] and Quan & Stamm [20] in their

implementation which ally ease of execution and compactness in

terms of data. More details regarding these equations can be found

in the supplemental materials.

We especially rely on the circle classification provided by Quan

& Stamm [20]. As illustrated in fig. 7, we can test if a circle �8 9

is occluded by the SAS sphere of an atom 0: by comparing the

distance between 2: and its furthest point on �8 9 to the radius of

the SAS sphere. If the distance is smaller, the circle is fully inside

the sphere. In the same way, we can test for an intersection between

�8 9 and 0:’s SAS sphere by testing if the distance between 2: and

its closest point on �8 9 is smaller than the radius of the sphere.

In the following sections of this paper, we show that these

computations can be the basis of a strong diminution of the memory

consumption.

4 Structural SES computation

In this section, we present the main steps of the processing pipeline.

As many previous works [13], [28], [30]–[32], it takes place

during the construction of the SAS structural information. Once

the geometry is produced, it can be used for various purposes,

including rendering or geometry analysis that can be required

for in-depth surveys. Our pipeline mostly features a SAS circle

classification and two processing dedicated to SAS intersection and

segment computation. The processing pipeline, the hierarchy of its

main steps, and their corresponding novelties compared to previous

works are given in fig. 8.

4.1 SAS circles computation and classification

The circle acquisition process is divided into two main parts:

computation and classification. The first one aims at finding the

intersection between all SAS spheres while the other is oriented

toward the identification of circles that will be used to produce SES

data. This last part is essential since it allows to strongly reduce the

memory used in the following stages.

To compute every atom’s neighborhood N (0), we find the

set of SAS spheres intersecting the current atom by checking if

the distance between 28 and their center is less than A8 + A 9 +2A? .

This spatial query is achieved by using a uniform acceleration

grid as usually performed in the related works [13], [28], [32]

and in GPU algorithm relying on neighborhood queries [34], [35]

for both its competitive construction and query performance. The

acceleration structure is built by first computing the hash value of

each atom describing their corresponding grid cell, sorting atoms

on this basis, and finally compute for each cell their start and end

atom sorted indices. We rely on an empirical dynamic cell size

6 = min
(

2< > ⌈log2 (#M)⌉
)

which slowly grows in power of two

with the atom number #M.

Once atoms’ neighborhood has been discovered, the challenge

is located in its processing. Indeed, as the neighbor search is

achieved on an atom basis, it contains a lot of duplicated circles

or buried into neighboring atoms. Even if some previous works

were using intersection discovery to find the limited set of useful

circles [13], we rely on a circle classification scheme as performed

by other works [19], [28]. However, whereas the latter compute

hidden atoms and circles, we leverage this process to provide an

additional refinement. As further studied in fig. 11 they can directly

serve to gather the neighborhood by circle type.

For every circle �8 9 we check if a neighbor SAS sphere

associated with an atom 0: ∈ N (08) is occluding or intersecting

the circle. While the computation can be directly stopped if the

circle is occluded, it is mandatory to test every neighboring sphere

to know if a visible circle is full or intersected. These operations

can be achieved in a single step since they rely on the same data.

From these tests, a circle can be classified as:

• Buried: �8 9 is located inside another atom and is not

contributing to the surface.

• Full: �8 9 is creating a sector in %8
+ and will produce a %C 5 .

• Intersected: �8 9 is creating a sector in %8
+ and may produce

several SAS intersection points and segments.

We refer to I as the set of intersected circles. It is also important

to note that all intersected circles may not result in intersections

and segments. Indeed, their detected intersections can be hidden

by other atoms which case will be handled in the next part of this

section. Based on this classification scheme, we can directly derive

Fig. 7: Circle classification tests. The left schema represents the

occlusion test while the right represents the intersection test. W is

the distance that is compared to the radius of 0:’s SAS sphere.

6

Fig. 8: Illustration of the computation pipeline giving the geometry of the complete SES. The schema also emphasizes the modification

we made to the state-of-the-art SES computation method on GPUs [28].

both %C 5 and %+ patch data. The set of %C 5 is composed of full

circles, while the set of %+ is created from each atom by creating a

sector for every visible �8 9 . Its axis is equal to the circle’s normal

=8 9 and its radius can be derived with:

cos−1

(

=8 9 ·
>− 28

A8 + A?

)

, > ∈ �8 9 (3)

4.2 SAS intersections

SAS intersections are built from I since it represents the restricted

set of visible circles which are intersected by neighboring atoms.

However, as a part of the complex molecular structure, we must

verify that every discovered intersection is not occluded by an atom

next to the three spheres at the origin of its creation.

To do so, for every intersected circle, we test if intersections

occur with every neighboring intersected circle �8: ∈ I, 0: ∈

N (08) ∩N
(

0 9

)

and compute the two possible SAS intersections

G0 and G1 accordingly. The resulting intersection points can then

be filtered by checking if they are hidden by a neighboring atom as

achieved in previous works [8], [13], [27].

As stated in section 3, even if %−’s singularities are implicitly

handled in Quan & Stamm [8]’s work thanks to their SDF

formulation, we still rely on neighborhood search to alleviate the

Fig. 9: Illustration of the %C construction process. �8 9 ’s intersection

list is processed starting at intersection G
8 9:0

1
and by sorting

according to the sign used for its computation. In this context, G
8 9:0

1

leads to a trigonometric ordering from 28’s perspective. Based on

this statement, we know that black parts of the circle are occluded

while yellow parts yield to segments.

cost of our method for rendering. This can be achieved in a similar

way as the circle discovery discussed in section 4.1 by finding the

neighboring ones whose center is closer than 2A? .

4.3 SAS segments

SAS segments result from intersected circles found during the SAS

intersections computation. Then, as every segment is created from

two intersections, we can assert that:

#PC =

∑ #X
(

�8 9

)

2
, ∀�8 9 ∈ I (4)

with #X
(

�8 9

)

as the number of intersections of �8 9 .

In previous works [13], [14], [28], [32], intersections and

segments were sometimes established together producing re-

dundancy. However, segments can be directly created from the

circle intersection list by applying an angle-wise sort as used

by alternative methods [8], [31]. Finally, intersection equations

describe the relative position of the intersection point compared to

the sphere triplet [20]. It can thus be used to recover the occluded

part of �8 9 .

As illustrated in fig. 9, we can select a first intersection, no

matter its position on the circle, and retrieve its angular ordering

to avoid creating segments in the occluded region. We also have

to take into account the order of the circle’s indices in the triplet

{8, 9 , :} since the angular ordering is based on a circle perspective.

Hence, if the circle is indexed as �8: the ordering is inverted

compared to �8 9 and � 9: . The sorting algorithm is then performed

on the angle of every intersection compared to the first one. Every

intersection couple can then be gathered as a resulting segment.

To avoid storing the angular ordering used after the segment

computation, we inverse both segment intersections if the picked

direction is reversed. Every segment can then be processed with

the same operations without relying on other information.

5 GPU Implementation

Our method is designed to benefit from parallel environments such

as modern GPU’s SIMT. We then describe several optimizations

performed in our implementation regarding the memory manage-

ment process as well as the computation load distribution.

We rely on CUDA 11.6 for its available features like its memory

pool to limit temporary allocation costs and libraries such as

Thrust and CUB [36]. However, any other GPU APIs supporting

these characteristics could be used. In the following section, we

refer to CUDA vocabulary and its two hierarchical categories:

7

Fig. 10: Rendering of the SES of the complete model of phage Qbeta virion (PDB: 7LHD) which capsid is partially removed through

plane culling to allow visualization of RNA and the maturation protein. It also emphasizes the completeness of the acquired surface,

allowing tunnels and pocket visualization. The left image illustrates how the SES can be useful to give a proper visualization of the

overall shape of this large complex, especially with RNA’s twists, while the right image shows that it remains true with thinner details

regarding structural interactions.

block and warp. When a computation is launched, threads are

grouped into blocks sharing characteristics such as memory level

and synchronization behavior. These blocks are themselves split

into small groups of few threads (32 or 64) called warps. Inside a

block, warps can be executed both sequentially and in parallel while,

within a warp, threads are fully concurrent and support special

instructions allowing cooperative processing. In this section, we

present the improvements we made regarding the two highly parallel

and cooperative processing of both intersections and segments

leveraging these GPU characteristics.

5.1 Circle types handling

The first optimizations are based on the classification presented

in section 4.1. Due to their respective types, circles require very

different processing which would introduce execution divergence.

Fig. 11: Ratios of the number of circles �8 9 where 8 < 9 and

classified as buried, full %C 5 , intersected without visible intersec-

tions (I ∩¬%C) or intersected with visible intersections (I ∩%C)

out of their total and generated with a probe radius A? = 1.4Å.

Almost 50% of the circles are buried. %C 5 and (I ∩%C) are the

only categories of circles really creating surface patches, in contrast

with (I ∩¬%C) circles which contributes through sectors to %+,

and represents a small portion of the overall number of circles.

To address this issue, we handle each circle types through a

dedicated process. Since %C 5 only represent a very small part of

the total amount of circle as shown in fig. 11, they can be directly

saved during the classification using atomic operations. In contrast,

the intersected circles set I is efficiently built by removing other

circle types through stream compaction. From these operations, we

derive the set of visible circles I∪%C 5 at the basis of %+ patches

construction.

5.2 Cooperative intersection processing

One of the most critical steps of the SES computation is to find

SAS intersections. This is mainly caused by the need to traverse

the neighborhood. As illustrated in fig. 11, the ratio of intersected

circle I out of the total number of circles is about 50% and remains

steady across all the samples of our test dataset, even with strongly

varying atom number and positional density. The complexity of

the processing is then located in the number of tests required

to compute and validate intersections with neighboring circles.

Based on these statements, we can assert that the parallelization

of this exploration allows better throughput. Furthermore, the

processing of a single circle is by itself heavy and a dedicated

processing is interesting. Thus, we introduce a cooperative and

parallel processing strategy of the neighborhood of every atom 08 ,

which is described in a high-level language in algorithm 1.

We start with the construction of a per atom task list composed

of its set of intersected circles. Each warp then fetches a circle

�8 9 of the block for processing. For each 0: ∈ N (08) , : ≠ 9 , we

test sequentially with the entire warp if there exists an intersected

circle � 9: where 8 < 9 < : (l.8-10 in algorithm 1). In order to

efficiently compare both neighborhoods N (08) and N
(

0 9

)

, we

process subsets of N (08) of the size of the warp to benefit from its

local compute power. We also rely on a bit mask K of the size of

the warp to keep track of intersections requiring further processing

as illustrated in fig. 12. After the neighborhood exploration, threads

directly calculate resulting intersection data which allows to further

refined the mask K based on the existence of each intersection

(l.11-13 in algorithm 1). Finally, we perform the visibility test (l.14-

18 in algorithm 1) by assigning a subset of N (08) to each threads

of the warp. Intersections are tested for occlusion sequentially with

8

an intra-warp parallel test. Visible intersections are saved to shared

memory before block-wise saving to device memory. These steps

are repeated until all 08’s neighborhood N (08) has been processed

for a given circle �8 9 .

This process allows a more uniform distribution of the workload

as well as making memory access more coherent at warp level

while reducing the amount of high-level synchronization. Moreover,

it benefits from efficient use of caching strategies thanks to the

processing locality. Indeed, N (08) is shared between the full block

while N
(

0 9

)

is loaded at warp level. This cache helps the search

across different parallelism levels strengthening its value.

Finally, to reduce the cost of the following processing, we refine

the number of %− patches that actually require a neighbor search.

Intersections with neighbors are then placed at the beginning of

their buffer which allows us to directly operate on contiguous data.

5.3 Cooperative segment processing

The segment creation process requires to retrieve for a given circle

its set of intersection. While it can be simply achieved by appending

to a list in a sequential implementation, this interleaved pattern is a

major concern in a concurrent system. Previous work [28] solved it

by computing all the intersections of a given circle at the cost of

repeated computation. This allows avoiding synchronization but it

also increases a lot the workload.

To address this issue, we compute for each circle its intersection

count #X
(

�8 9

)

and corresponding intersection indices X
(

�8 9

)

through a two-step process. During the intersection computation

(fig. 8), we only record their circle indices and increment atomically

the three corresponding counts #X (�) (l.22-24 in algorithm 1). A

second process, intersection gathering (fig. 8) is then launched to

create the mapping between circles and intersections X (�). This

is made by using a thread per intersection to reserve a writing

location within X (�) through an atomic operation on its element

count #X (�) which is done for its three corresponding circles. The

atomic operations only produce a low amount of thread concurrency

since they only happen on a circle basis. This fast processing not

only reduces overlapping dependencies but also allows to postpone

the allocation of the intersection position buffer which is only

Fig. 12: Schema of the cooperative SAS intersection process used

in algorithm 1. The warp is refining intersections that must be

computed by iteratively modifying the bit mask K. Dotted lines:

intra-warp operation processed in parallel with all warp’s threads

but iteratively for each entry in K set to one.

Algorithm 1: Intersections cooperative processing

Data: N (0), I

Result: SAS Intersections X

1 block.load(N (08)) ⊲ To shared memory

2 X′← ∅ ⊲ To shared memory

3 C← thread.id() ⊲ Relative index in warp

4 block.sync()

5 forall �8 9 ∈ N (08) ∩I, 8 < 9 do ⊲ A circle per warp

6 warp.load(N
(

0 9

)

) ⊲ From device memory

7 K ←¬0 ⊲ Initialize bit mask

8 forall : ∈ {0, . . . , size(warp)} and K[k] ≠ 0 do

9 K [:] ← warp.test(0: ∈ N
(

0 9

)

)

10 end

11 if K[t] ≠ 0 then

12 K[t]← exists(G8 9:C)

13 end

14 forall : ∈ {0, . . . , size(warp)} and K[k] ≠ 0 do

15 if warp.test(visible(G8 9: , N (08))) then

16 X′←X′∪
{

G8 9:
}

⊲ Temporary save

17 end

18 end

19 end

20 block.sync()

21 forall G8 9: ∈ X
′ do ⊲ To device memory

⊲ Per circle atomic operation

22 #X
(

�8 9

)

← #X
(

�8 9

)

+1

23 #X (�8:) ← #X (�8:) +1

24 #X
(

� 9:

)

← #X
(

� 9:

)

+1

25 X ←X∪
{

G8 9:
}

26 end

performed when the exact intersection number is known, between

intersections computation and gathering.

Thanks to the previous step, we know the intersections of

every circle at the origin of their segments. However, before their

actual computation, we find the indices of the intersected circles

which contribute to some intersections. As previously stated, I

contains the circles that are able to produce an intersection but

we don’t know before the computation step if this intersection is

visible. As shown in fig. 11, only a small part of these circles

actually contribute to the surface. By only launching threads on

circles producing intersections, we avoid unnecessary overhead.

Furthermore, based on SAS circles intersection count #X
(

�8 9

)

, we

can compute the exact memory required to store segments data.

Once circles intersections are retrieved, we directly proceed to

the angular sorting, as illustrated in algorithm 2. If applied on a

circle basis, this step could result in highly divergent processing

due to sorting algorithm properties. However, direct use of parallel

cooperative sorting algorithms would lose the locality of the

computation or give poor levels of parallelism. To address this issue,

we perform the sorting of multiple circles at once. This is made

possible by applying an offset to the data (l.12 in algorithm 2). This

allows reserving a specific range for a given circle while benefiting

from the parallelism offered by cooperative sorting algorithms.

Circles intersection indices and relative angles are stored in threads

memory to execute the sorting at warp level. After this computation

and based on previous stream compaction, we are able to store

segments data fully concurrently on a per-circle basis.

This part of the processing strongly benefits from the data

9

structure derived from Quan & Stamm [8]’s depiction and allows

creating %C geometry in a fast and efficient parallel scheme.

5.4 Estimating the required memory

Even if we chose to closely compact arrays used during the

computation, the allocation scheme remains a challenging aspect

of large structure processing. This is especially true regarding the

intersections which were often one of the most consuming geometry

bits of the surface. In previous works, this was solved with pre-

allocation from the base circle number [37] or with an estimated

percentage of the possible triplets [13]. While the latter allowed

to improve the memory consumption process, we rely on the

properties determined during circles classification which fit more

the architecture of our pipeline and allows a thinner configuration.

Since the number of circles able to produce an intersection

is theoretically known, we can bound the maximum number of

intersections by:

#X ≤ #I max
(

#X
(

�8 9

))

(5)

with #I as the number of visible and intersected circles and

max
(

#X
(

�8 9

))

as a constant bounding the maximum number of

intersections per intersected circle.

As illustrated in fig. 11, more than half of the intersected circles

are not contributing to the surface. max
(

#X
(

�8 9

))

is then set by

taking into account this ratio of unused circles and serve as a mean

of the possible count of intersection per circle. It allows to strongly

reduce the size of the pre-allocated buffer since the size of I is

significantly smaller than the size of N .

From our experiments, we have bound the maximum size

of the neighborhood of an atom to 128 (for a standard probe

Algorithm 2: Segments cooperative processing

Data: X
(

�8 9

)

Result: SAS Segments S

1 G←X
(

�8 9

)

2 reversed← isReversed
(

�8 9 , G [0]
)

3 C← thread.id() ⊲ Relative index in warp

4 XC ← CX, X > 2c

5 angles← {0} ⊲ To thread memory

6 indices← {0} ⊲ To thread memory

7 for 0 ∈
{

1, . . . , #X
(

�8 9

)

−1
}

do

8 U, V← G [0−1], G [0]

9 if reversed then

10 U, V← V,U

11 end

12 \← XC + angleBetween(U, V)

13 angles← angles ∪{\}

14 indices← indices ∪{0}

15 end

16 indices← warp.sortByKey(angles, indices)

17 for B ∈
{

0, . . . , #X
(

�8 9

)

/2−1
}

do

18 0, 1← indices[2B], indices[2B+1]

19 U, V← G [0], G [1]

20 if reversed then

21 U, V← V,U

22 end

23 S ←S∪{8, 9 , U, V} ⊲ To device memory

24 end

radius A? = 1.4Å) as well as the mean intersection number per

intersected circles to 2. This allows to handle large molecules

without parameter change. Circles intersections bound is in practice

not restricting since it only aims to be an overall mean. We do allow

each circle to contain up to 16 intersections during %C creation

process in our implementation.

After the execution of this pipeline, we have obtained all patches

data presented in section 3 which can be directly rendered as

presented by previous works [26], [31].

6 Performance and discussion

To compare the performance of our pipeline against previous works,

we chose the GPU Contour-Buildup implementation [28] publicly

available in the framework Megamol [37]. While several methods

presented many improvements, none of them provided similar or

faster computation time [13], [32]. We also present the results of our

method by only producing the exterior molecular surface which can

be preferred for fast visualization and computation. This is made by

replacing %+ with complete vdW spheres and unifying %C 5 and %C

processing which result in a simplification of the algorithm and its

memory requirements. However, this implementation respects the

final data structure used by the original algorithm and can thus be

rendered with the same overall strategy. Unlike the original method,

we use a dedicated buffer rather than limited texture memory

allowing larger allocation without impact on the rendering time.

Experiments were conducted on an AMD Ryzen 5 1600, an

NVIDIA RTX 2080 and with a dataset of fifteen molecules from

hundreds to millions of atoms, gathered from the RCSB Protein

Data Bank (PDB) [38]. Rendered views of the dataset molecules

are given as supplemental material. All benchmarks have been

achieved with a probe radius equal to the water molecule radius

1.4 Å [39], as it is a common solvent. However, as illustrated in

fig. 13, our implementation remains stable with larger probe radius.

Performance benchmarks are presented in table 2. First, we

can notice that our method provides similar computation times

compared to the parallel Contour-Buildup while acquiring the

complete surface information. The exterior molecular surface

Fig. 13: Comparison of two SES (PDB: 1AON) computed with

our method, using a standard probe radius (top: 1.4 Å) and a larger

one (bottom: 2.4 Å). The surface is emphasized by the patches

corresponding chains color to provide structural information. On

the bottom image, we can notice typical %− intersections.

10

PDB Id #Atom
Krone et al. [28] Ours Ours exterior

Time (ms) Mem. (MB) Time (ms) Mem. (MB) Time (ms) Mem. (MB)

1AGA 126 4.50 11.92 3.22 0.39 2.21 0.15

101M 1413 4.51 133.55 3.75 4.50 2.51 1.76

1VIS 2531 4.64 238.66 3.67 8.01 2.65 3.52

7SC0 11638 5.64 1108.02 4.70 36.17 3.54 16.16

3EAM 13505 6.44 1282.09 5.20 42.69 4.01 19.63

7DBB 17733 7.00 1675.43 5.80 56.18 4.49 25.50

1A8R 45625 11.14 4307.71 9.48 144.92 7.36 65.79

7O0U 55758 12.39 5263.23 10.71 177.25 8.49 80.29

1AON 58870 11.95 5552.49 10.75 185.33 8.37 86.86

7RGD 65008 16.86 6123.51 18.06 214.33 14.64 105.35

3JC8 107640 - - 14.99 324.03 11.60 147.57

7CGO 335722 - - 47.64 1054.85 36.34 486.03

4V4G 717805 - - 104.72 2249.47 81.64 1130.35

6U42 1358547 - - 200.79 4287.12 157.23 2162.99

3J3Q 2440800 - - 700.17 7631.24 324.22 3744.73

TABLE 2: Comparison of our method compared to the publicly available implementation of GPU Contour-Buildup [28] in Megamol [37].

Times are given in milliseconds (ms) and represent the mean of 1000 iterations per case, while maximum memory use is given in

megabytes (MB). Every experiment has been conducted with 100 warm-up iterations which were not considered in the final results.

computation remains consistently and moderately faster in all

experiments. However, the compared method is bound in our test

dataset to the protein 7RGD composed of 65 008 atoms while ours

is capable of handling more than 2 million atoms thanks to its

optimized memory consumption scheme. We can notice that the

memory consumption of all methods grows linearly depending on

the number of atoms. However, our exterior computation consumes

almost 60 times less memory than the compared method on the

largest complex (PDB Id: 7RGD) while the complete one uses 30

times less. These results illustrate how the parallelization of the

process as well as the precise allocation scheme help to provide fast

results while handling large molecular complexes. The complete

surface acquisition can thus be made in low computation time and

consumer-like hardware. On larger complexes, the exterior-only

molecular surface computation remains almost constantly twice

more memory efficient. These improvements mostly come from

the lack of %+ processing as well as the unification of %C and

%C 5 . Based on these results, our method can compute the complete

surface of large complexes coming from small viruses, as illustrated

in fig. 10, or part of larger ones, as illustrated in fig. 1, which was

not possible before on GPUs. This is made without trade-offs

regarding the computation time and/or the surface quality. These

improvements could then lead to wider use of analytic computations

for molecular geometry study or visualization and illustration.

Moreover, the consequent memory consumption improvements

could also be at the basis of larger availability across the various

user configurations that would not be restricted anymore to high-

end hardware. Experiments have also been re-conducted with an

NVIDIA Titan RTX and an Intel i9 9900K and are given as

supplemental material as well as a plot comparing the memory

scalability of the studied methods.

To give a deeper analysis of our algorithm costs, we produced

detailed GPU benchmarks given in fig. 14. First of all, we

can estimate the additional costs such as allocation and CPU-

GPU transfers required for the precise patch number estimation

from the difference between GPU times and those presented in

table 2. The proportions of these additional costs out of the total

computation are, however, decreasing from approximately 60%

for the smallest molecule of the dataset to 25% for the largest,

as expected. Secondly, our method’s costs are mainly shared by

the first two stages. The %C discovery and the construction of %−
neighborhoods are made in a short fraction of the total computation

thanks to the highly concurrent scheme as well as the identification

of intersecting probes resulting in complexity reduction. Even if

our parallel implementation demonstrates fast computation time

compared to previous works, the creation of %− is still one of the

most consuming part of the computation. As shown in fig. 11, a

consequent part of this process is dedicated to intersected circles

without visible intersection. Finally, we can notice that the molecule

and its geometrical properties have an impact on the different stages.

As presented in other works, the ratio between the initial number

of atoms compared to the ones contributing to the surface results in

different computational cost at similar atom counts. This explains

the varying ratios across the dataset regarding the different stages.

To test the data produced by our method, we implemented two

rendering engines targeting different purposes. The first one is a

path-tracer implemented with OptiX [40] which has been used to

produce the molecule illustrations of this paper and demonstrates

that it is suitable for high-quality rendering. The second one

targets real-time visualization purposes with rasterization using

impostors and geometry intersection in screen space as in previous

works [26], [31], [41]. Both engines were built based on the

expressions described in section 3 which are analytically intersected

or sphere-traced [33]. The data produced by the pipeline is then

directly accessed at rendering time. Even if the scope of this

paper is oriented toward the construction of the SES, we provide

performance benchmarks of our real-time rendering engine for

information purposes only as supplemental material.

7 Limitations and future works

As previously presented, our method can compute the complete

surface of large proteins with reduced impact on the computation

time. However, it can suffer from limitations in specific cases.

First, to compute the surface of a single protein with varying

probe radius, a full re-computation is needed and no previously

computed data could be re-employed. Indeed, as the radius changes,

all circle data may change due to non-uniform impacts on atoms

radius ratio. Therefore, the complete pipeline must be re-executed.

Additional parameter changes can also be needed regarding the

11

Fig. 14: Detailed GPU benchmarks of the full surface computation with a probe radius A? = 1.4Å on a subset of our test dataset. As

illustrated, respective relative computation times are correlated to the molecule geometry influencing stage complexity. A similar analysis

performed for Krone et al. [28]’s method is given as supplemental material.

maximum neighbor per atom [42]. Even if this might not be a

drawback in the context of illustration since the probe radius may

not vary too often, it could slow down a cavity visualization process.

Second, even if we rely on a circle classification to bound the

number of circles able to produce an intersection, an important

part of the computation is still dedicated to circles without visible

intersections. A meaningful enhancement could then be made from

a fast identification of these circles.

Deriving Quan & Stamm [8]’s SDF, evaluations of both %C

and %C 5 are achieved through sphere-tracing. This allows varying

precision and quality settings, but it may also be slower than direct

ray-surface intersection computation. In this case, the exterior-only

molecular surface representation could represent a good fallback.

Our implementation is based on a hierarchical pipeline as it

was commonly achieved in the related works, allowing dynamic

allocation thanks to computed information. However, even if we

improved the parallelization of the algorithm as well as the memory

access coherency and allocation scheme, improvements could also

be achieved by performing the computation without the need for

CPU-GPU synchronization.

Finally, a mesh is often required in simulations. Thus, producing

such geometry from the result of our pipeline could be interesting.

This could be achieved by adapting Quan & Stamm [20]’s work on

GPU.

8 Conclusion

In this paper, we have presented a method targeting GPU com-

putation of the complete SES by leveraging the last theoretical

advances made for its depiction. This allowed us to strongly reduce

the data structure footprint on GPU dedicated memory. To alleviate

its impact on the computation time, we have also proposed several

additions for a better parallelization of the overall process. Our

method achieves competitive time compared to the previous fastest

method while being able to handle large molecular entities and

without being restricted to the exterior molecular surface which

was not possible before. Based on these improvements, our strategy

could be used for illustration and visualization purposes as well

as geometry processing, all strongly benefiting from the quality of

the acquired surface. The progress made for the amelioration of

the memory consumption might also support the use of analytical

methods in hardware constrained applications.

Acknowledgments

Cyprien Plateau–Holleville is supported by institutional grants

from the National Research Agency under the Investments for the

future program with the reference ANR-18-EURE-0017 TACTIC.

Matthieu Montes is supported by the European Research Council

Executive Agency under the research grant numbers 640283 and

101069190. The authors thank NVIDIA for providing a Titan RTX.

References

[1] A. J. Olson, “Perspectives on structural molecular biology visualization:
From past to present,” Journal of Molecular Biology, vol.
430, no. 21, pp. 3997–4012, Oct. 2018. [Online]. Available:
https://doi.org/10.1016/j.jmb.2018.07.009

[2] G. T. Johnson, L. Autin, M. Al-Alusi, D. S. Goodsell, M. F. Sanner, and
A. J. Olson, “cellPACK: a virtual mesoscope to model and visualize
structural systems biology,” Nature Methods, vol. 12, no. 1, pp. 85–91,
Dec. 2014. [Online]. Available: https://doi.org/10.1038/nmeth.3204

[3] T. Klein, L. Autin, B. Kozlı́ková, D. S. Goodsell, A. Olson, M. E.
Gröller, and I. Viola, “Instant Construction and Visualization of Crowded
Biological Environments,” IEEE Transactions on Visualization and

Computer Graphics, vol. 24, no. 1, pp. 862–872, Jan. 2018.

[4] J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin,
M. Wall, A. Lappala, D. Phillips, W. Fischer, C.-S. Tung, T. Schlick,
Y. Sugita, and K. Y. Sanbonmatsu, “Scaling molecular dynamics beyond
100, 000 processor cores for large-scale biophysical simulations,” Journal

of Computational Chemistry, vol. 40, no. 21, pp. 1919–1930, Apr. 2019.
[Online]. Available: https://doi.org/10.1002/jcc.25840

[5] E. Sunden and T. Ropinski, “Efficient volume illumination with multiple
light sources through selective light updates,” in 2015 IEEE Pacific

Visualization Symposium (PacificVis). IEEE, Apr. 2015. [Online].
Available: https://doi.org/10.1109/pacificvis.2015.7156382

[6] B. Johnston, “Bradyajohnston/molecularnodes: Molecularnodes v2.2.0
for blender 3.4.x,” 2023. [Online]. Available: https://zenodo.org/record/
7498428

[7] F. M. Richards, “AREAS, VOLUMES, PACKING, AND PROTEIN
STRUCTURE,” Annual Review of Biophysics and Bioengineering,
vol. 6, no. 1, pp. 151–176, Jun. 1977. [Online]. Available:
https://doi.org/10.1146/annurev.bb.06.060177.001055

[8] C. Quan and B. Stamm, “Mathematical analysis and calculation of
molecular surfaces,” Journal of Computational Physics, vol. 322, pp.
760–782, Oct. 2016. [Online]. Available: https://doi.org/10.1016/j.jcp.
2016.07.007

[9] M. Krone, B. Kozlı́ková, N. Lindow, M. Baaden, D. Baum, J. Parulek,
H.-C. Hege, and I. Viola, “Visual analysis of biomolecular cavities: State
of the art,” Computer Graphics Forum, vol. 35, no. 3, pp. 527–551, jun
2016.

[10] L. Schrödinger and W. DeLano, “Pymol,” May 2020. [Online]. Available:
http://www.pymol.org/pymol

https://doi.org/10.1016/j.jmb.2018.07.009
https://doi.org/10.1038/nmeth.3204
https://doi.org/10.1002/jcc.25840
https://doi.org/10.1109/pacificvis.2015.7156382
https://zenodo.org/record/7498428
https://zenodo.org/record/7498428
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1016/j.jcp.2016.07.007
https://doi.org/10.1016/j.jcp.2016.07.007
http://www.pymol.org/pymol

12

[11] E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S.
Couch, T. I. Croll, J. H. Morris, and T. E. Ferrin, “Ucsf chimerax:
Structure visualization for researchers, educators, and developers,” Protein

Science, vol. 30, no. 1, pp. 70–82, Oct. 2020. [Online]. Available:
https://doi.org/10.1002/pro.3943

[12] D. Sehnal, S. Bittrich, M. Deshpande, R. Svobodová, K. Berka, V. Bazgier,
S. Velankar, S. K. Burley, J. Koča, and A. S. Rose, “Mol∗ viewer:
modern web app for 3d visualization and analysis of large biomolecular
structures,” Nucleic Acids Research, vol. 49, no. W1, pp. W431–W437,
May 2021. [Online]. Available: https://doi.org/10.1093/nar/gkab314

[13] M. Schäfer and M. Krone, “A massively parallel cuda algorithm
to compute and visualize the solvent excluded surface for
dynamic molecular data,” Workshop on Molecular Graphics and

Visual Analysis of Molecular Data, 2019. [Online]. Available:
https://diglib.eg.org/handle/10.2312/molva20191094

[14] M. L. Connolly, “Analytical molecular surface calculation,” Journal of

Applied Crystallography, vol. 16, no. 5, pp. 548–558, Oct. 1983. [Online].
Available: https://doi.org/10.1107/s0021889883010985

[15] B. Kozlı́ková, M. Krone, M. Falk, N. Lindow, M. Baaden, D. Baum,
I. Viola, J. Parulek, and H.-C. Hege, “Visualization of biomolecular
structures: State of the art revisited,” Wiley, vol. 36, no. 8, pp. 178–204,
Online 2016.

[16] M. F. Sanner, A. J. Olson, and J.-C. Spehner, “Reduced surface: An
efficient way to compute molecular surfaces,” Biopolymers, vol. 38, no. 3,
pp. 305–320, Mar. 1996. [Online]. Available: https://doi.org/10.1002/
(sici)1097-0282(199603)38:3⟨305::aid-bip4⟩3.0.co;2-y

[17] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,”
ACM Transactions on Graphics, vol. 13, no. 1, pp. 43–72, jan 1994.

[18] M. Sanner and A. Olson, “Real time surface reconstruction for moving
molecular fragments,” Pacific Symposium on Biocomputing. Pacific

Symposium on Biocomputing, p. 385—396, 1997.

[19] M. Totrov and R. Abagyan, “The contour-buildup algorithm to
calculate the analytical molecular surface,” Journal of Structural

Biology, vol. 116, no. 1, pp. 138–143, Jan. 1996. [Online]. Available:
https://doi.org/10.1006/jsbi.1996.0022

[20] C. Quan and B. Stamm, “Meshing molecular surfaces based on
analytical implicit representation,” Journal of Molecular Graphics

and Modelling, vol. 71, pp. 200–210, Jan. 2017. [Online]. Available:
https://doi.org/10.1016/j.jmgm.2016.11.008

[21] N. Lindow, D. Baum, and H.-C. Hege, “Ligand excluded surface: A
new type of molecular surface,” IEEE Transactions on Visualization and

Computer Graphics, vol. 20, no. 12, pp. 2486–2495, dec 2014.

[22] P. Hermosilla, M. Krone, V. Guallar, P.-P. Vázquez, À. Vinacua, and
T. Ropinski, “Interactive GPU-based generation of solvent-excluded
surfaces,” The Visual Computer, vol. 33, no. 6-8, pp. 869–881, may
2017.

[23] X. Martinez, M. Krone, and M. Baaden, “Quickses: A library for fast
computation of solvent excluded surfaces,” Workshop on Molecular

Graphics and Visual Analysis of Molecular Data, 2019.

[24] J. Parulek and I. Viola, “Implicit representation of molecular surfaces,” in
2012 IEEE Pacific Visualization Symposium. IEEE, Feb. 2012. [Online].
Available: https://doi.org/10.1109/pacificvis.2012.6183594

[25] S. Bruckner, “Dynamic visibility-driven molecular surfaces,” Computer

Graphics Forum, vol. 38, no. 2, pp. 317–329, May 2019. [Online].
Available: https://doi.org/10.1111/cgf.13640

[26] M. Krone, K. Bidmon, and T. Ertl, “Interactive visualization of molecular
surface dynamics,” IEEE Transactions on Visualization and Computer

Graphics, vol. 15, no. 6, pp. 1391–1398, nov 2009.

[27] M. Krone, C. Dachsbacher, and T. Ertl, “Parallel computation and
interactive visualization of time-varying solvent excluded surfaces,” in
Proceedings of the First ACM International Conference on Bioinformatics

and Computational Biology. ACM, Aug. 2010. [Online]. Available:
https://doi.org/10.1145/1854776.1854840

[28] M. Krone, S. Grottel, and T. Ertl, “Parallel contour-buildup algorithm
for the molecular surface,” in 2011 IEEE Symposium on Biological

Data Visualization (BioVis). IEEE, Oct. 2011. [Online]. Available:
https://doi.org/10.1109/biovis.2011.6094043

[29] D. Kauker, M. Krone, A. Panagiotidis, G. Reina, and T. Ertl, “Rendering
Molecular Surfaces using Order-Independent Transparency,” in Euro-

graphics Symposium on Parallel Graphics and Visualization, F. Marton
and K. Moreland, Eds. The Eurographics Association, 2013.

[30] A. Jurcik, J. Parulek, J. Sochor, and B. Kozlikova, “Accelerated
visualization of transparent molecular surfaces in molecular dynamics,”
in 2016 IEEE Pacific Visualization Symposium (PacificVis). IEEE,
Apr. 2016. [Online]. Available: https://doi.org/10.1109/pacificvis.2016.
7465258

[31] M. Manak, L. Jirkovsky, and I. Kolingerova, “Interactive analysis of
connolly surfaces for various probes,” Computer Graphics Forum, vol. 36,
no. 6, pp. 160–172, may 2016.

[32] T. Rau, S. Zahn, M. Krone, G. Reina, and T. Ertl, “Interactive cpu-based
ray tracing of solvent excluded surfaces,” Eurographics Workshop on

Visual Computing for Biology and Medicine, 2019. [Online]. Available:
https://diglib.eg.org/handle/10.2312/vcbm20191249

[33] J. C. Hart, “Sphere tracing: a geometric method for the
antialiased ray tracing of implicit surfaces,” The Visual Computer,
vol. 12, no. 10, pp. 527–545, Dec. 1996. [Online]. Available:
https://doi.org/10.1007/s003710050084

[34] R. Hoetzlein, “Fast fixed-radius nearest neighbors: Interactive million-
particle fluids,” in GPU Technology Conference (GTC), 2014.

[35] J. Basselin, L. Alonso, N. Ray, D. Sokolov, S. Lefebvre, and B. Lévy,
“Restricted power diagrams on the GPU,” Computer Graphics Forum,
vol. 40, no. 2, pp. 1–12, may 2021.

[36] NVIDIA, “Cuda toolkit documentation v11.6.0,” 2022. [Online].
Available: https://docs.nvidia.com/cuda/archive/11.6.0/

[37] P. Gralka, M. Becher, M. Braun, F. Frieß, C. Müller, T. Rau, K. Schatz,
C. Schulz, M. Krone, G. Reina, and T. Ertl, “MegaMol – A Comprehensive
Prototyping Framework for Visualizations,” The European Physical

Journal Special Topics, vol. 227, no. 14, pp. 1817–1829, Mar 2019.
[38] H. M. Berman, “The protein data bank,” Nucleic Acids Research, vol. 28,

no. 1, pp. 235–242, jan 2000.
[39] J. S. D’Arrigo, “Screening of membrane surface charges by divalent

cations: an atomic representation,” American Journal of Physiology-Cell

Physiology, vol. 235, no. 3, pp. C109–C117, sep 1978.
[40] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,

D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “OptiX,”
ACM Transactions on Graphics, vol. 29, no. 4, pp. 1–13, Jul. 2010.

[41] C. Sigg, T. Weyrich, M. Botsch, and M. Gross, “GPU-Based Ray-
Casting of Quadratic Surfaces,” in Symposium on Point-Based Graphics,
M. Botsch, B. Chen, M. Pauly, and M. Zwicker, Eds. The Eurographics
Association, 2006.

[42] A. Varshney, F. Brooks, and W. Wright, “Computing smooth molecular
surfaces,” IEEE Computer Graphics and Applications, vol. 14, no. 5, pp.
19–25, sep 1994.

Cyprien Plateau–Holleville is a PhD candidate at the XLIM laboratory
and the Université de Limoges, France. His main research interests are
visualization and illustration of complex molecular systems. Plateau–Holleville
received his engineering diploma in computer science from the Université de
technologie de Belfort Montbéliard, France.

Maxime Maria is an Associate Professor at the XLIM laboratory and the
Université de Limoges, France. His main research interests are visualization
and interactive simulation of complex molecular structures. Maria received his
PhD from the Université de Poitiers, France.

Stéphane Mérillou is a Professor at the XLIM laboratory and the Université
de Limoges, France. His research interests include aging and weathering,
physically-based rendering, natural phenomena, and visualization of complex
molecular systems. Mérillou received his PhD in computer science from the
Université de Limoges, France.

Matthieu Montes is a Professor of bioinformatics and head of the molecular
modeling and drug discovery team of the GBCM laboratory at Conservatoire
National des Arts et Métiers, Paris, France. His research interests include
molecular modeling, drug discovery and design, interactive simulation methods
and computational geometry. Montes received his PhD in pharmaceutical
sciences from Paris Descartes University and a habilitation in structural
biochemistry from Paris Sud University. In 2014 and 2022, he was a fellow
of the European Research Council. He is a senior member of the Institut
Universitaire de France (IUF).

https://doi.org/10.1002/pro.3943
https://doi.org/10.1093/nar/gkab314
https://diglib.eg.org/handle/10.2312/molva20191094
https://doi.org/10.1107/s0021889883010985
https://doi.org/10.1002/(sici)1097-0282(199603)38:3<305::aid-bip4>3.0.co;2-y
https://doi.org/10.1002/(sici)1097-0282(199603)38:3<305::aid-bip4>3.0.co;2-y
https://doi.org/10.1006/jsbi.1996.0022
https://doi.org/10.1016/j.jmgm.2016.11.008
https://doi.org/10.1109/pacificvis.2012.6183594
https://doi.org/10.1111/cgf.13640
https://doi.org/10.1145/1854776.1854840
https://doi.org/10.1109/biovis.2011.6094043
https://doi.org/10.1109/pacificvis.2016.7465258
https://doi.org/10.1109/pacificvis.2016.7465258
https://diglib.eg.org/handle/10.2312/vcbm20191249
https://doi.org/10.1007/s003710050084
https://docs.nvidia.com/cuda/archive/11.6.0/

	Introduction
	Related works
	Geometric definition
	SES patches
	Computation of circles and intersections

	Structural SES computation
	SAS circles computation and classification
	SAS intersections
	SAS segments

	GPU Implementation
	Circle types handling
	Cooperative intersection processing
	Cooperative segment processing
	Estimating the required memory

	Performance and discussion
	Limitations and future works
	Conclusion
	References
	Biographies
	Cyprien Plateau–Holleville
	Maxime Maria
	Stéphane Mérillou
	Matthieu Montes

