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Abstract—An expert eye is often needed to correctly identify
mucosal lesions within endoscopic images. Hence, computer-aided
diagnosis systems could decrease the need for highly specialized
senior endoscopists and the effect of medical desertification.
Moreover, they can significantly impact the latest endoscopic
classification challenges such as the Inflammatory Bowel Disease
(IBD) gradation. Most of the existing methods are based on
deep learning algorithms. However, it is well known that
these techniques suffer from the lack of data and/or class
imbalance which can be lowered by using augmentation strategies
thanks to synthetic generations. Late GAN framework progress
made available accurate and production-ready artificial image
generation that can be harnessed to extend training sets. It
requires, however, to deal with the unsupervised nature of those
networks to produce class-aware artificial images. In this article,
we present our work to extend two datasets through a class-
aware GAN-based augmentation strategy with the help of the
state-of-the-art framework StyleGAN2-ADA and fine-tuning. We
especially focused our efforts on endoscopic and IBD datasets to
improve the classification and gradation of these images.

I. INTRODUCTION

The detection and gradation of digestive mucosal lesions
require the analysis of endoscopic images by an expert
gastrointestinal pathologist. However, the availability of med-
ical practitioners is highly related to geographical location.
Inequalities in access to care due to the trained professional
unavailability can be offset with the help of Computer-Aided
Diagnosis (CAD). These systems offer adequate accuracy
levels, which might even outperform the expert eye [1]] and
be a decision support for non-expert pathologists [2]]. Their
development can then be an interesting extension of the
available medical equipment to facilitate patient recovery.

Both Inflammatory Bowel Disease (IBD) forms, Crohn’s
Disease (CD) and Ulcerative Colitis (UC), are chronic diseases
that mainly cause rectum and colon inflammation. Currently,
they represent one of the main classification challenges for
automatic systems [3[]. Their graduation is commonly per-
formed with state-of-the-art metrics such as the Mayo Score
for UC [4] and needs a solid background with continuous
training to acquire a good accuracy level. The use of CAD
systems might therefore help to offer stable results between
patients’ specific cases and professional curriculum. Finally,
the search for reproducibility in pathological diagnosis is still
an active medical research topic [5]]. Regarding their technical

and mathematical characteristics, CAD systems could then be
able to bring more stability to the classification than expert
pathologists.

Deep-learning-based solutions, such as Convolutional Neural
Network (CNN), have been successful in image classification
[6] and offer mandatory robustness for medical use as endo-
scopic data analysis [7, |1]. However, these algorithms need a
substantial amount of data to provide satisfactory performance.
This requirement might be hard to meet regarding the scarcity
of medical data which can involve a general lack of data and
imbalanced classes. The use of augmentation strategies helps to
lower the deficit of images in a deep-learning-based project [{8]]
and enhances the size and quality of training datasets. Usually,
basic transformations are performed, such as translation and
rotation, while preserving the semantical information. This
kind of modification can fail to ease the generalization of the
training data due to a lack of variation. Generative Adversarial
Networks (GAN) have made great progress since they were
introduced by [9] and enabled close to photorealism synthesis
[10, [11]]. The use of artificially generated images can help to
increase the sample number of training datasets and ease the
training of feature detectors. In this work, we use late progress
from GAN research with StyleGAN2-ADA [12}|13]] and transfer
learning for class-specific artificial image generation [14] to
extend endoscopic datasets and improve the accuracy of state-
of-the-art classification systems. As we considered the IBD
classification as one of the current challenges in endoscopic
imaging, we validate our method on a specific UC dataset.
Finally, we make the code of this project availabld]

The first section of this article focuses on data augmentation
and state-of-the-art GAN frameworks. The second presents our
image augmentation strategy, followed by the experimental
results. Finally, the conclusion summarises the method, its
results, and potential future works.

II. STATE OF THE ART

a) Data augmentation: The artificial extension of the
training set has been widely used to improve the accuracy of
deep-learning-based systems [8l, |15]]. Most algorithms provided
within deep learning frameworks for this purpose are basic

*Project web page: https://github.com/PlathC/GanBased Augmentation



image transformations that decrease the risk of positional
overfitting by moving the semantic information throughout the
image. These image transformations are helpful during neural
network training to emphasize the meaningful information in
the data. However, this kind of augmentation is limited and
can fail to produce the necessary diversity to achieve its goal.

b) Neural augmentation: The use of neural-based solu-
tions for data augmentation can improve classification perfor-
mance [15] to extend imbalanced or small training sets. This
subfield aims to propose data augmentation strategies based
on a neural network to improve the training of another learner
network. This is performed by producing data to ease the
understanding of the student network. One of the main issues
faced for its application is to provide sufficient knowledge
of the source data to the trainer network based on innovative
methods regarding the application context.

c) Generative Adversarial Networks: GAN [9] are neural
network systems known for the quality of their image gen-
eration. They are trained during a min-max game between a
generator that aims to fool a classifier network by producing
realistic images from a random noise vector. On the other
hand, the second network, a classifier, aims to predict the
real nature of its inputs. However, this type of framework
originally requires special training conditions and a large
amount of data to converge. The use of novel and innovative
architecture reduced these problems and helped to democratize
this technology [16] as well as the latest breakthroughs in GAN
research and synthetic generation [[10]]. StyleGAN’s [11] arrival
made available style manipulation which contributes a lot to
ease the disentanglement of these systems and to preserve the
quality of the produced images or stabilizing the training.
StyleGAN2 [12] is an improvement that fixes generation
artifacts and decreases computation costs via architecture
modifications and simplifications. However, the quality of the
generation of these technologies is still linked to the amount
of data given during the training phase. This need can be
lowered by transfer-learning [17] and specialization of the
system on target data. Finally, standard data augmentation
strategies have been adapted to fit with GAN needs based on
adaptive differentiable algorithms targeting the discriminator
and providing backpropagation through these augmentation
computations [13]]. Therefore, this work helped to democratize
the use of GAN on a low amount of data. Based on these
features, GAN can be harnessed for neural augmentation. It
has moreover already been established in the state of the art for
various purposes such as dataset equalization [[18] and medical
imaging [[19, [20} 21} 22].

d) Fréchet Inception Distance: The evaluation of GAN
performance has remained a challenge until the introduction of
the Fréchet Inception Distance (FID) [23|]. This metric intends
to measure the realism of synthetic data and has been widely
used in GAN research. It is given by:

FID (X,Y) = |ux — py|*+Tr (zX F Yy —20/ExDy ).
(D

This formula aims to provide the distance between the original
distribution X and the artificial one ¥ by comparing means x
and variances based on the covariance matrices traces Tr (X)
of an Inception V3 [24] deep layer activation from both
distribution samples. As a distance, the lesser the result of
the FID is, the closer are the distributions and the best is the
image quality.

e) Conditional generation: To properly extend a training
set, the synthetic generation needs to comply with differences
across classes within the dataset distribution. GANs are mostly
unsupervised systems that require strenuous efforts to set up a
class-aware generation. Various methods try to constrain the
network’s generation to produce specific features [20]]. Other
methods use latent space exploration thanks to backpropagation
or principal component analysis [25| |26] and allow precise
control of the generation based on the study of the GAN
representation. However, these features require individual
domain adaptation and human intervention to acquire semantic
accurate results without “leaking” between class boundaries.
Transfer learning has finally demonstrated its ability to limit
GAN’s latent space based on training specialization in a context
of limited data [27} |14]]. Nevertheless, this last strategy involves
the creation and the training of individual weights groups
dedicated to each target class.

The data augmentation system we present aims to provide
realistic synthesis in a multi-class context of limited data.
Hence, we chose StyleGAN?2 [12] as the basis of the generation
system for its state-of-the-art artificial generation. In addition,
the use of the Adaptive Discriminator Augmentation (ADA)
[13] is perfectly suited to ease the GAN training with limited
data. Finally, the specialization training by transfer learning
[14} 28] is one of the most straightforward strategies to restrict
the GAN generation space to provide a class-aware synthesis.

III. METHOD

The method developed in this work is based on the strategy
presented by [14] which proposes to extend the training set
thanks to transfer-learning for class-aware generations. This
specialization aims to lower the need for per-class large amounts
of data to get good convergence performance with conditional
synthesis based on adversarial training. Moreover, this type
of GAN transfer learning has already been demonstrated in
medical imaging for other purposes [28]. However, whereas
[14] used a dedicated regularization function, we chose to use
the freezing of the discriminator higher-level layers [17] to
benefit from its balance between simplicity, accessibility, and
state-of-the-art effectiveness.

Figure [I] illustrates our method. We first fully pretrain the
network on an extensive unlabeled database which aims to
acquire basic endoscopic artificial generation knowledge. The
trained weights are then reused during a fine-tuning step by
freezing the first higher-level layers of the discriminator to
take advantage of its feature extraction capabilities and to
fine-tune its classification part on a class-specific subset [17].
The goal is to specialize the generator to the target class
while using the general knowledge acquired on many samples.
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Fig. 1: The transfer learning system used to generate class-aware images.

This specialization can be repeated as much as necessary on
more specific data. To obtain good results, a funnel-shaped
specialization is used to gradually transfer information to the
network and improve the generation quality [14]. This step-wise
strategy involves selecting the training order based on class
properties to provide an iterative process during the learning
of the network.

The GAN architectural choice is a crucial step that may
affect the needs of specific experimentation, hyperparameter
tuning, training time, and/or image quality. We chose the
StyleGAN2 framework for its convergence performance,
its stability during training, and its availability. The additional
use of adaptive discriminator data augmentation [13] suited
particularly well with the goal of this project since it provides
significant improvements during the training on limited data.

To finally extend the training set such that the classifier
better understands the feature we are aiming to classify, one
prime setting is to select the classes that need to be extended
and in which proportions. We decided to stick our experiments
to a uniform augmentation to limit their number.

IV. EXPERIMENTATION

This section describes how we used the GAN-based aug-
mentation method on gastrointestinal datasets, validate it on
IBD gradation, and the results of our experiments.

A. Data

At first, research efforts on gastrointestinal disease classi-
fication were focused on polyps which are currently highly
represented in existing datasets. To handle other diseases and
work on more challenging classification issues, appropriate
datasets were created to provide training data as a basis for
new method developments. These are, however, still unusual,
and only a few contain images of new challenging topics such
as IBD. We then collected all candidates for this application
related to our need for endoscopic images in Table [I]

Hyper-Kvasir presents the main advantages of aggregat-
ing large panels of gastrointestinal data in a broader way than
CAD-CAP and Crohn-IPI [31]). Its wide number of classes
also enables to test our method in different configurations
with varying sample numbers or with diverse feature panels
which can also contain characteristics not produced by diseases
(tool appearing on image or green thumbnail representing the
topographic view of the colon). The unlabeled 90,000 images
of the dataset are moreover highly attractive as a basis of the
transfer-learning pipeline.

To perform the validation of our method, an additional Hyper-
Kvasir [29] subset, described in Table |E|, has been created to
focus our experiments on UC and to provide an alternative study
with fewer classes than the base dataset. This partial dataset
aims to explore our method on the classification challenge that
IBD is currently representing. We referred to it as the Custom-
UC set. Moreover, it lays the foundation of an experimental
protocol regarding its limited number of samples.

Hyper-Kvasir’s UC classes are split into ascending levels
(0 to 3) by the Mayo Score [4] and defined by experts evaluation
which introduces intermediate levels due to confusing cases.
We decided to merge classes based on this score to create a
bias-free experimental protocol and provide a more production-
like environment [4] [32]]. Since its first two levels indicate
an inactive (grade 0) and a light inflammation (grade 1), we
combined those into a single class called non-pathological.
We added images from the Boston Bowel Preparation Scale
(BBPS) classes of levels 2 and 3 to this class to augment its
number of images. Indeed, the BBPS score evaluates cleanliness
ascendingly (0 to 3), 2 and 3 being the ones where the bowel
mucosa has been flushed and can be correctly observed. Even
if Hyper-Kvasir does not provide a dedicated “Healthy”
class, the authors define BBPS classes as non-pathological
findings which can then be leveraged as normal bowel images.
The remaining UC classes, except grade 1-2, were added to
the pathological class since they describe moderate and severe



Name Diseases Modality Size-Balance Availability
Polyps, .
Hyper-Kvasir [29]  Barrett’s esophagus, ~ White light 110.079 images, Open academic
. L 10 662 labeled
Ulcerative colitis...
Polyps, — 24,824 images
CAD-CAP, [30] Vascular lesions atgg light, 4,824 pathological By request
Ulcerative lesions... 20,000 non-pathological
3498 images
Crohn-IPI [31] Crohn’s disease WCE 40% pathological By request

60% non-pathological

TABLE I: Considered dataset for IBD classification

inflammation. Indeed, we chose to avoid using the UC grade
1-2 for the Custom-UC set that could not have been classified
as healthy or pathological and could have introduced a bias.

Non-pathological Pathological
Class name | Image number Class name Image number
UC 0-1 35 UC-2 133
ucC1 201 UuC-2-3 28
BBPS2-3 1148 UC-3 443
Total 1,384 Total 604

TABLE II: Distribution of non-pathological and pathological classes of the
Custom-UC set and their source classes in Hyper-Kvasir [29]

Since [29] provided fixed splitting of the dataset for repro-
ducibility purposes, we chose to use the first split (numbered
0) as the training set, and the second split (numbered 1) as
the validation set. These two parts use a ratio of 50/50, which
divides by two the number of available images within the
training set and strengthen the need for data augmentation.

B. Experimental settings

a) GAN settings: Each GAN training has been performed
until the FID stopped improving. We used a batch size of 16,
an image size of 2562, enabled dataset mirroring augmentation,
and kept all default remaining StyleGAN2-ADA [12 |13]
settings. All experimentations were performed with Nvidia
P100 and V100 depending on availability with 16 Gb of
VRAM.

b) Classifier architectures: Classifier architectures have
been selected based on the work presented by [29]. Some
of their published experimentations were carried out through
ResNet [34] and DenseNet [35]]. These well-known CNN archi-
tectures are time-tested in the current context and allow state-
of-the-art accuracy levels especially by including a pretraining
phase on ImageNet [36] to acquire general features detection
capabilities. We selected for our experiments ResNet-50 and
DenseNet-161 networks rather than ResNet-152. Indeed, the
latter has a higher number of parameters than ResNet-50 while
having poorer performance than DenseNet-161. Moreover, the
Resnet-50 low number of parameters could enable lightweight
evaluation and training.

c) Classifiers settings: Training of both ResNet-50 and
DenseNet-161 were performed on same hardware configu-
rations and with same image size as generative networks,
respectively configured with batch size of 64 and 128. All

experimentations were executed based on a Stochastic Gradient
Descent with a momentum of 0.9, restricted to 30 epochs for
time optimization purposes, include standard data augmen-
tation based on basic image transformations (color jittering,
specific rotation {0°,90°,180°,270°}, random horizontal flips,
translations, shears, and crops), and use cyclic learning rate
scheduling starting at 1e~3 with an amplitude of 0.1.

d) Augmentation strategy: We decided to extend the
Custom UC dataset uniformly while we selected in-tension
classes from Hyper-Kvasir by analyzing the baseline’s pre-
diction results. Indeed, we chose to focus our augmentation
strategy for the Hyper-Kvasir study on classes that needed
it the most and then avoid training one GAN for each of its
23 classes, which would have been computationally and time-
consuming. The latter was conducted by taking into account
by-class results obtained from raw training, presented in Figure
[2l and the number of samples within the relevant classes. We
then chose to extend only classes with a few samples as Ileum
or Hemorrhoids, and the ones with low performing results as
Esophagitis A or Ulcerative Colitis Grade 1 and 3.

C. Results

Experimental results presented in this section contain the
evaluation of artificial image quality, and the ability to improve
classifier performance based on state-of-the-art metrics. We
chose to follow the metrics choice of [29] to ease the
comparison with their results and to benefit from the capacity
of these indicators to evaluate performance in a multi-class
context.

a) Image synthesis: Table[[II] presents the training order of
each training setting and its results compared to real randomly
selected samples. Artificial results present good visual realism
and distribution spread confirmed by the FID score level on
the Custom-UC classes, which seems to contain a sufficient
amount of samples for this augmentation method. These results
strengthen the choice of StyleGAN2-ADA [12, |13]] with fine-
tuning [17] to fit with the needs of this project to provide a
quality artificial conditional generation. The augmentation of
Hyper-Kvasir [29] classes containing fewer samples than our
custom subset appears to get poorer results based on the FID
score even if class features can be properly restored, as we
can see with stage 3 of the Ulcerative Colitis class. Rendered
mucosal views contain characteristic inflammatory textures that
display the GAN ability to catch the disease attributes but might


https://datasets.simula.no/hyper-kvasir/
https://www.snfge.org/content/cad-cap-une-base-de-donnees-francaise-vocation-internationale-pour-le-developpement-et-la
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11317/113171Q/CrohnIPI--An-endoscopic-image-database-for-the-evaluation-of/10.1117/12.2543584.short?SSO=1

Real Synthetic Starting weights  Training image number  Best FID|
Unlabeled None 99,417 18.32
Non Pathological (Custom-UC) Unlabeled 691 43.55
Pathological (Custom-UC) N‘(’gui’;‘gr‘s_lgggal 301 5558
Barretts Short Segment Unlabeled 26 96.75
Barretts Long segment Unlabeled 20 118.66
Hemorrhoid Unlabeled 3 97.68
Tleum Unlabeled 4 65.41
Esophagitis A Unlabeled 201 51.67
Esophagitis B-D Unlabeled 130 71.97
Ulcerative Colitis Grade 1 Unlabeled 100 83.92
Ulcerative Colitis Grade 3 Unlabeled 66 111.21
Impacted Stools Unlabeled 65 76.28

TABLE III: [Best viewed in electronic version.] GAN training settings and randomly selected generated images compared to the original distribution. ({:

Lower is better)

lack variation and fail to map the original distribution correctly.
The learning procedure on the few provided hemorrhoid and
ileum images strongly overfitted as displayed by the distribution
returned by the generators that could not produce more variation.
Slight contrasts can still be observed within ileum generations
which are similar to basic mixing between training set images
and seems insufficient to produce more diversity. Finally, it
seems that the image synthesis of classes with only a few
samples is badly evaluated by the FID. This leads to a better
score for these samples than classes with visually less overfitted
production. This may be produced by the bias of the metric
introduced by the very small sample number [37].

b) Dataset augmentation: Table [[V] displays the protocol
baseline compared to the best performing augmented configu-
rations. We present the best-augmented results after an iterative
experiment to find peaks by adding synthetic images to the

training set. It then demonstrates that even if networks have
similar augmentation needs, training and architectural choices
might lead to different results with our augmentation system.

Results on full Hyper-Kvasir demonstrate the method
capabilities, especially on non-pretrained networks. Pretrained
models manifest more limited improvements on micro average
metrics than on macro average, demonstrating the difficulty of
extending classes with only a few samples. The chosen strategy
can properly generate class samples by reducing the need for a
large amount of data to fit with this project’s goals but seems
to require at least tens of samples. Minor improvements can be
observed in the confusion matrices in Figures 2] and [3] Even
if several classes are better classified such as Barret’s Short
Segment, other classes, such as Z-Line, get confusing results
after the augmentation, which moderates the improvement.

Training configurations on the Custom-UC set validate the



Macro Average Micro Average

Configuration Architecture Pretrained  Artifical addition Precision T Recall * F1 1 Precision T Recall? F11 MCC 1
No - 0.491 0.455 0.461 0.771 0.771 0.771 0.751
ResNet-50 {34] 600 0.521 0.485 0.491 0.786 0.786 0.786 0.768
ImageNet - 0.577 0.593 0.584 0.895 0.895 0.895 0.886
. ¢ 600 0.609 0.601 0.596 0.898 0.898 0.898 0.889
Hyper-Kvasir [29]

No - 0.533 0.494 0.500 0.806 0.806 0.806 0.791
DenseNet-161 {35 500 0.551 0.520 0.525 0.842 0.842 0.842 0.829
- 0.602 0.601 0.596 0.902 0.902 0.902 0.894

ImageNet
500 0.617 0.613 0.613 0.907 0.907 0.907 0.899
No - 0.804 0.815 0.809 0.835 0.835 0.835 0.619
ResNet-50 [34] 3000 0.857 0.901 0.871 0.883 0.883 0.883 0.757
ImaceNet - 0.919 0.916 0917 0.930 0.930 0.930 0.835
¢ 2500 0.924 0.932 0.928 0.938 0.938 0.938 0.857

Custom-UC

No - 0.846 0.888 0.860 0.873 0.873 0.873 0.734
DenseNet-161 {35 3000 0.857 0.898 0.870 0.883 0.883 0.883 0.754
ImageNet - 0.923 0.925 0.924 0.935 0.935 0.935 0.848
¢ 3000 0.930 0.945 0.937 0.945 0.945 0.945 0.875

TABLE IV: Comparison of raw training metrics and augmented training metrics based on our method ({: Higher is better)

Fig. 2: [Best viewed in electronic version.] Confusion matrices of best
performing raw configurations compared to their best performing augmented
one on Hyper-Kvasir [29] dataset. 0: Barrett’s, 1: Barrett’s Short Segment, 2:
BBPS-0-1, 3: BBPS-2-3, 4: Cecum, 5: Dyed Lifted Polyps, 6: Dyed Resection
Margins, 7: Esophagitis a, 8: Esophagitis b-d, 9: Hemorrhoid, 10: Ileum, 11:
Impacted Stool, 12: Polyps, 13: Pylorus, 14: Retroflex Rectum, 15: Retroflex
Stomach, 16: Ulcerative Colitis grade 0-1, 17: Ulcerative Colitis grade 1, 18:
Ulcerative Colitis grade 1-2, 19: Ulcerative Colitis grade 2, 20: Ulcerative
Colitis grade 2-3, 21: Ulcerative Colitis grade 3, 22: Z-line

augmentation strategy regarding the metric results. Improve-
ments made in the various metrics show GAN’s ability to
provide more training information to the learner even with
high FID levels.

Finally, the augmentation strategy chosen to deal with a
large number of classes might present too much simplicity
for a large multi-class problem. Indeed, the uniform addition
of generated samples might hide the need for class-specific
tweaking to properly augment each class as needed by the
learner to understand class features correctly. These experiments

ResNet50-CUCRawImageNet DenseNet161-CUCRawimageNet

True label
True label

Predicted label predicted label

ResNet50-CUC2500ImageNet 0.9 DenseNet161-CUC3000ImageNet 09

True label
True label

Predicted label Predicted label

Fig. 3: [Best viewed in electronic version.] Confusion matrices of best
performing raw configurations compared to their best performing augmented
one on Custom-UC. 0: Non-pathological tract, 1: Pathological

let the possibility of additional work to provide the best-suited
configuration for this specific dataset.

V. CONCLUSION AND FUTURE WORKS

In this work, we demonstrate a solution to deal with
the lack of data in classification based on StyleGAN2-ADA
[12, |13]] and the freezing of the discriminator [17] to provide
class-aware image generation. This method helped to extend
existing datasets with low amounts of data and increase
performance accuracy by using GAN state-of-the-art works
and unlabeled data. Performance gains demonstrated through
several classification metrics ascertain the value of the proposed
method on Hyper-Kvasir [29] and our custom subset. This is
observed by the results obtained on our Custom-UC dataset,
which aimed to present our method’s performance on this
current classification challenge for endoscopic imaging. The



method seems, however, to be unable to adequately perform
when only fewer than 20 images are available.

The artificial generation has shown its ability to assist
classifiers training and offers better convergence performance
on pretrained and non-pretrained classifiers and with Custom-
UC, and full Hyper-Kvasir [29] dataset. However, few sample
classes are noticeably overfitted by the generator and decrease
the improvements provided by our strategy.
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