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Fig. 1. We propose a method to compute an Apollonius diagram on GPU. Left: The computation is performed from the geometry of its cells to allow
high parallelism level. Our method handles both homogeneous and heterogeneous spatial distributions supporting a wide range of applications. Top right:
Homogeneous distribution of 100000 sites with radii between 0.1 and 10.1 computed in 8.1s. Bottom right: Heterogeneous distribution of 211834 sites with
radii between 1.5 and 2.2 computed in 1.5s (PDB Id: 6RXU). Performances are given for an NVIDIA RTX 4090.

We present a novel comprehensive construction algorithm of Apollonius
diagrams designed for GPUs. Efficient and robust algorithms have been
proposed for the computation of Voronoi diagrams or Power diagrams.
In contrast, Apollonius cells are neither convex nor bounded by straight
boundaries, making their computation complex, especially in more than two
dimensions. Their parallel computation also represents a challenge because
of the sequential nature of state-of-the-art algorithms. In this article, we
tackle the computation of these diagrams from the geometry of their cells.
Our strategy is based on a core cell topology update allowing the iterative
insertion of new sites found through nearest neighbor queries. To benefit
from the highly parallel environment of modern GPUs and fit their memory
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restriction, we define a lightweight data structure allowing the representa-
tion of the complex topology of Apollonius cells. Additionally, we provide
several space exploration procedures for their efficient construction under
both homogeneous and heterogeneous spatial distributions. Our method
outperforms the fastest state-of-the-art CPU implementation while comput-
ing the complete geometry. As a possible use case, we show an application
for molecular illustration.
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1 INTRODUCTION
Space partitions are fundamental structures at the core of vari-
ous data analysis algorithms. Once data is numerically encoded,
querying attributes quickly turns into a geometric problem. Voronoi

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0000-0003-1510-557X
HTTPS://ORCID.ORG/0000-0003-3375-483X
HTTPS://ORCID.ORG/0000-0001-5242-1585
HTTPS://ORCID.ORG/0009-0004-5723-1827
HTTPS://ORCID.ORG/0000-0003-2820-8076
https://orcid.org/0000-0003-1510-557X
https://orcid.org/0000-0003-3375-483X
https://orcid.org/0000-0001-5242-1585
https://orcid.org/0009-0004-5723-1827
https://orcid.org/0000-0003-2820-8076
https://doi.org/10.1145/3730868
https://doi.org/10.1145/3730868


2 • Plateau–Holleville et al.

Fig. 2. Apollonius diagram in R2. The curvature of bisectors depends on the
difference between the sites radii (a) and their distance (b). When a site is
contained into another one, it does not contribute to the diagram (c).

diagrams and generalizations [Aurenhammer 1991] with arbitrary
distances classically appear when dealing with discretized contin-
uous domains as a set of sites. These diagrams define a simple
mapping between the domain and the sites based on proximity ac-
cording to a specific distance. They naturally appear as the solution
of optimal transport problems [Bonneel and Digne 2023; Geiß et al.
2012], but can also be used for fluid simulations [Brochu et al. 2010]
or chemistry [Manak et al. 2016].

The Apollonius diagram, or additively weighted Voronoi diagram,
is defined by the additively weighted Euclidean distance

𝛿 (𝑠𝑖 , 𝑥) = | |𝑝𝑖 − 𝑥 | | − 𝑟𝑖 , (1)

with 𝑠𝑖 = (𝑝𝑖 , 𝑟𝑖 ) ∈ R𝑑 ×R a weighted site represented by a position
𝑝𝑖 and a weight 𝑟𝑖 . Apollonius diagrams describe the Euclidean
distance between weighted sites and give a representation of the
empty space within the input set. These characteristics come at the
cost of a harder construction than affine diagrams, such as Voronoi
and Power diagrams, due to curved facets (Fig. 2) and disconnected
skeletons in R3.
Apollonius diagrams are used in a wide range of applications in

various fields of research. Notably, they are fundamental when an
actual distance to the sphere is required which cannot be replaced
with another distance leading to an affine diagram. In R2, they have
been used in material science [Pivovarov et al. 2018], route plan-
ning [Sharifzadeh and Shahabi 2007], geography [Moreno-Regidor
et al. 2012], economy [Lanzara and Santacesaria 2023], or music
theory [McLean et al. 2007]. In R3, several applications are relying
on their properties, for sphere packing [Weller and Zachmann 2010]
or studies where spheres are used as simple proxies approximating
more complex shapes, notably in biochemistry [Krone et al. 2016;
Lindow et al. 2013; Manak 2019]. Such works challenge available
methods in terms of computation times due to the increasing input
size which can reach millions of spheres. Moreover, biochemical
structures as proteins are often characterized by heterogeneous
spatial distributions (Fig. 1) involving more complex construction
due to anisotropic cell shapes and bisectors between distant sites.
Due to their intrinsic complexity, Apollonius diagrams have re-

ceived less attention than Voronoi and Power diagrams. Even if
some two-dimensional robust algorithms [Karavelas and Yvinec
2002] and implementations [The CGAL Project 2023] are available,
we are not aware of implementation in higher dimensions offering
similar robustness.

We present in this article a comprehensive construction of the
three-dimensional Apollonius diagram through ameshless approach
[Ray et al. 2019] allowing an implementation on GPU by processing
each cell in parallel. Our method is based on nearest neighbors
queries with the following contributions:
• we present a method for the update of the topology of an
Apollonius cell allowing its iterative construction;
• we provide several search procedures for the construction of
spatially homogenous and heterogenous distributions of sites;
• we propose a data structure with a lowmemory footprint fitting
GPU restrictions.

Despite mainly targeting comprehensive computation, our al-
gorithm features faster execution than existing methods in R3. It
also remains efficient with heterogeneous spatial distributions, dif-
ficult to handle in a cell-oriented setting [Basselin et al. 2021; Ray
et al. 2019]. In terms of robustness, our study does not include exact
predicates and can be subject to numerical inaccuracies. There-
fore, we use an explicit random perturbation of the input set to
ensure general position (i.e., no more than four cospherical sites,
etc.), as classically performed [Barber et al. 1996]. In contrast with
the topology of the diagram, which requires a robust computation,
the handling of general positions only have a minor impact on the
accuracy of its geometry. Nevertheless, it is at the basis of various
applications, targeting structural protein analysis, optimization or
numerical simulations. Our reference implementation can be found
at https://github.com/PlathC/apo.git.

2 BACKGROUND
First, we recall the characteristics of Apollonius diagrams in R3.
Table 1 provides the nomenclature and Fig. 3 gives an illustration of
such a diagram.
Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, be a set of weighted sites where each

𝑠𝑖 = (𝑝𝑖 , 𝑟𝑖 ) can be seen as a sphere of radius 𝑟𝑖 centered at 𝑝𝑖 .
Given any point 𝑥 ∈ R3, the distance between 𝑥 and the sphere
characterized by 𝑠𝑖 is given by 𝛿 (𝑠𝑖 , 𝑥) (1).We define nearest, yielding

Symbol Signification

𝛿 the additively weighted Euclidean distance.
𝑥 a point.

𝑝𝑖 , 𝑟𝑖 , 𝑠𝑖 , 𝑆
a site, a weight, a weighted site and a set of
weighted sites.

A(𝑆 ) , A(𝑠 ) , A𝑡 (𝑠 ) an Apollonius diagram, a cell, and a cell built
from a subset of 𝑡 neighbors of 𝑆 .

A(𝜎 ) a set of points whose set of nearest neighbors
sites is 𝜎 .

𝐻𝑖 𝑗 a bisector or facet.
𝑒𝑖 𝑗𝑘 , E a trisector or an edge and a set of edges.

𝑣𝑖 𝑗𝑘𝑙 , V
a quadrisector or a vertex and a set of ver-
tices.

𝜏 (𝑥 ) the largest open ball centered at 𝑥 with an
empty intersection with the set of sites.

Table 1. Nomenclature
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Fig. 3. A set of weighted sites (in red) and their corresponding Apollonius diagram in R3. Facets can be curved and the skeleton disconnected due to the
additively weighted distance. The curviness of facets strongly depends on the distance between the involved sites and their radii. Some edges are closed (in
blue) and have no vertex.

the set of sites for which the distance to 𝑥 is minimal
nearest (𝑥) ≔ argmin

𝑠𝑖 ∈𝑆
𝛿 (𝑠𝑖 , 𝑥) . (2)

The combinatorics of the Apollonius diagram can then be simply
defined. Let 𝜎 ⊂ 𝑆 , a subset of sites. Its Apollonius dual is given by

A(𝜎) ≔
{
𝑥 ∈ R3

�� 𝜎 ⊆ nearest (𝑥)
}
.

In particular,A({𝑠𝑖 }) characterizes the entire cell of 𝑠𝑖 ,A({𝑠𝑖 , 𝑠 𝑗 }) a
bisector between 𝑠𝑖 and 𝑠 𝑗 and so on. In this article, we refer to the
cell A({𝑠𝑖 }) with A(𝑠𝑖 ) for conciseness. In contrast with Voronoi
and Power cells, Apollonius cells have curved boundaries. They are
therefore more difficult to compute than affine cells. Notably, they
are not always convex but only star-shaped around their site and
their edges are not even guaranteed to be connected (Fig. 3).

Bisector. An Apollonius bisector 𝐻𝑖 𝑗 defined by A({𝑠𝑖 , 𝑠 𝑗 }), is a
single sheet of a two-sheeted hyperboloid of revolution [Wang et al.
2020] when radii are different: its foci being the two sites centers
and the sheet being the one curved around the site with the smaller
radius. With equal radii, both sheets degenerate into a plane which
is the regular Euclidean bisector of the sites centers.

Edge. An Apollonius edge 𝑒𝑖 𝑗𝑘 , characterized by A({𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 }),
is the intersection of three bisectors. Only two of these bisectors
are needed to define the edge. The result is a subset of a conic lying
on a plane, which is a hyperbola when none of the sites is strictly
in the convex hull of {𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 }, or an ellipse otherwise [Will, H.-M.
1999]. The conic degenerates into a line when sites radii are equal,
or into a parabola as a limit case between hyperbola and ellipse. The
subset of this conic corresponding to the trisector is not guaranteed
to be connected. While hyperbolas are unbounded without limiting
vertices, ellipses are always closed and bounded. In the following
parts of this paper, we refer to edges shaped as hyperbolas and
ellipses respectively as hyperbolic and elliptic edges.

Vertex. An Apollonius vertex 𝑣𝑖 𝑗𝑘𝑙 , defined by A({𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 , 𝑠𝑙 }),
is the intersection of an edge 𝑒𝑖 𝑗𝑘 and a bisector 𝐻𝑖𝑙 (or any other
permutation of 𝑖 , 𝑗 , 𝑘 and 𝑙). When not empty, this intersection is
composed of one or two points [Gavrilova and Rokne 2003].

The set nearest (𝑥) (2) can be interpreted in terms of 𝜏 (𝑥), the
largest open ball centered at 𝑥 whose intersection with 𝑆 is empty. Its

boundary sphere is then tangential to its nearest sites. This yields to a
characterization of Apollonius diagrams similar to classical Voronoi
diagrams: A(𝜎) is a part of the diagram if and only if there exists a
sphere tangent to 𝜎 and centered at 𝑥 ∈ A(𝜎) whose corresponding
open ball 𝜏 (𝑥 ∈ A(𝜎)) does not intersect 𝑆 .

3 PREVIOUS WORKS
In this section, we present the related works targeting Voronoi di-
agrams and generalizations. We start with Apollonius diagrams
fundamental studies which are followed by their main construction
algorithms in R3. Finally, we present several related works on par-
allel computation methods, not restricted to Apollonius diagrams.

Apollonius diagrams fundamental studies. Several theoretical stud-
ies have laid the foundation of Apollonius diagrams computation
algorithms. In a survey on Power diagrams, Aurenhammer has
presented several links between Apollonius diagrams in R𝑑 and
Power diagrams in R𝑑+1 [Aurenhammer 1987]. Another mathemat-
ical framework for the study of Apollonius diagrams components
have been proposed by Gavrilova and Rokne in their work on the
update of a Euclidean Delaunay tessellation [Gavrilova and Rokne
2003]. Following the developments made for the robust computa-
tion of R2 Apollonius diagrams [Emiris and Karavelas 2006], Ka-
marianakis has presented a mathematical analysis of the predicates
required for Apollonius diagrams in R3 [Kamarianakis 2020].

Construction of Apollonius diagrams in R3. Deriving the results
presented by Aurenhammer [Aurenhammer 1987], Boissonnat et al.
construct a single Apollonius cell in R𝑑 from a corresponding Power
cell in R𝑑+1 [Boissonnat et al. 2006]. This linearization allows an el-
egant construction of Apollonius diagrams in R3 which is, however,
limited. Notably, the construction of a Power diagram in R4 is itself
computationally expensive due to the exponential number of ver-
tices. Edge-Tracing [Kim et al. 2004] is a popular algorithm, notably
for its simplicity, targeting the connected Apollonius skeleton. It
starts with a valid edge and then iteratively computes the vertices
from which other edges may be found. This algorithm offers an
interesting ease of implementation but is considered non-robust,
notably under disconnected cases, which occur with high radius
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change. This method has been implemented in Voronota [Olech-
novič and Venclovas 2014], a fast library targeting the computa-
tion of Apollonius diagrams in R3. In particular, it offers the best
performance for the construction of connected skeletons of Apol-
lonius diagrams. Edge-tracing has also been extended to support
disconnected skeletons [Manak and Kolingerova 2016]. Apollonius
diagrams can be constructed from the update of the Voronoi dia-
gram of the sites centers, which is however sequential [Kim and
Kim 2006]. Another method proposed a space refinement construc-
tion [Wang et al. 2020] which handles various configurations thanks
to its sweeping scheme. However, it comes at the cost of significant
computation times. Recently, Lee et al. have introduced a method fo-
cused on the topological robust construction [Lee et al. 2022]. Song
et al. have provided a dataset for the evaluation of the robustness
of Apollonius diagrams construction [Song et al. 2022]. Du et al.
have presented an algorithm robustly handling the computation of
implicit surface networks. It can then be leveraged to extract the
topological structure of Apollonius diagrams [Du et al. 2022].

Parallel construction. Multiple strategies can be adopted for par-
allel construction of Voronoi diagrams and generalizations. Cell-
oriented computations of Voronoi diagrams can be achieved by itera-
tively clipping cells with bisector planes [Rycroft 2009]. Additionally,
it has also been used for Voronoi diagrams generalizations [Basselin
et al. 2021; Bukenberger et al. 2022]. In contrast with other sequen-
tial algorithms [Bowyer 1981; Watson 1981], this allows a trivial
parallelization through the individual processing of each cell. GPU
implementations have been proposed by following this strategy for
Voronoi diagrams [Ray et al. 2019] and Power diagrams [Basselin
et al. 2021]. They allow the definition of an integration method
well suited for optimal transport and simulation purposes. These
strategies rely on the assumption that the set of cell neighbors is
similar to the set of the nearest neighbors which is not compatible
with spatially heterogeneous distribution. Other strategies have
been proposed based on the sampling of Apollonius bisectors to
individually build the cells structures. This is achieved by tracing

Fig. 4. An example of a topology update relatively to a cell. Facets are
qualified by their corresponding neighbor index. The connection between
two vertices through an edge is a geometrical information which depends on
the sites configuration and cannot be recovered only from the combinatorial
information. (a) Initial state of the cell. (b) Suppression of invalidated vertices
and computation of new vertices due to the addition of 𝑠𝑚 (as blue square
nodes). (c, d) Two possible combinations of new edges (as blue dotted links).

rays on bisectors, which allows reconstructing edges and vertices.
These algorithms can handle non-general position [Hu et al. 2017]
or robust computation of non-intersecting sites [Mukundan et al.
2022]. However, they offer a lower level of performance compared
to fast implementations of Edge-Tracing [Olechnovič and Venclovas
2014]. Finally, other strategies target fast computation from space
discretization but their precision is strongly linked to their memory
consumption [Rong and Tan 2006].

Considering these previous works, the construction of Apollo-
nius diagrams without assumption on their skeleton connectivity
remains challenging, notably in terms of performance. To address
this issue, we propose a novel GPU method handling these cases
while offering completely parallel cells computation.

4 APOLLONIUS DIAGRAMS CONSTRUCTION
In this section, we present our comprehensive computation method
of Apollonius cells. We start with an overview of the method (Sec-
tion 4.1) which is followed by the presentation of our data structure
(Section 4.2). Then, we present the initialization of the cells (Sec-
tion 4.3), the topology update process (Section 4.4) and dedicated
space exploration methods (Section 4.5). Finally, we give several
implementation details for fast execution on GPU (Section 4.6).

4.1 Overview
Given a weighted site 𝑠𝑖 and a set of weighted sites 𝑆 , our method
allows the construction of the cell A(𝑠𝑖 ). Let 𝑠𝑚 be a new neighbor
of 𝑠𝑖 in 𝑆 . 𝑠𝑚 is considered as contributing to A(𝑠𝑖 ) if and only if
the bisector 𝐻𝑖𝑚 exists in A(𝑠𝑖 ). Three main challenges must be
addressed to achieve a comprehensive and efficient construction.
First, when a new bisector 𝐻𝑖𝑚 is introduced in A(𝑠𝑖 ), parts of

the cell topology are invalidated and must be removed. Additionally,
new parts must be inserted by accurately identifying the boundaries
of𝐻𝑖𝑚 (Fig. 4). This is handled by our topology update method based
on the systematic validation of new parts of the cell (Section 4.4).

Second, the construction of A(𝑠𝑖 ) involves the search of the sub-
set of weighted sites in 𝑆 contributing to the cell. Previous works
were restricted to spatially homogeneous distribution allowing the
assumption that the set of contributing sites to a cell is equivalent
to the set of its nearest neighbors [Basselin et al. 2021; Ray et al.
2019]. However, this assumption cannot hold under heterogeneous
spatial distribution due to possible bisectors with distant sites. We
then define a set of dedicated search methods to ensure that A(𝑠𝑖 )
is correct without considering all possible sites in 𝑆 (Section 4.5).
Finally, the computation of Apollonius diagrams requires high

computational capabilities. Our method benefits from the massively
parallel architecture of modern GPUs thanks to the cell-oriented
construction. To fit this restricting environment, we define a dedi-
cated data-structure encoding the diagram topology (Section 4.2)
and provide several key implementation designs (Section 4.6).

4.2 Data structure
Our method relies on a compute-over-store approach to take into
account a large number of sites while fitting the restricted memory
of the GPU. This is achieved by storing minimal information and
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(a) Initial cell. (b) Vertex invalidation.

(c) Edge intersection without invalidated vertex. (d) Edge intersection with an invalidated vertex. (e) Bisector intersection leading to a closed edge.

Fig. 5. Illustration of the cell A(𝑠𝑖 ) and four configurations resulting from the insertion of a new neighbor 𝑠𝑚 producing the bisector 𝐻𝑖𝑚 . (a) The initial
cell A(𝑠𝑖 ) before inserting 𝑠𝑚 . The initial structure is only named in (a) for conciseness. (b) 𝑠𝑚 invalidates one vertex point and contributes to the three
new vertices 𝑣𝑖𝑘𝑙𝑚 , 𝑣𝑖 𝑗𝑘𝑚 and 𝑣𝑖 𝑗𝑙𝑚 and their corresponding edges. (c) 𝐻𝑖𝑚 intersects 𝑒𝑖 𝑗𝑙 producing the new vertex 𝑣𝑖 𝑗𝑙𝑚 composed of two points, and
their corresponding edges. (d) 𝑠𝑚 invalidates the vertex 𝑣𝑖 𝑗𝑘𝑙 and contributes to the new vertices 𝑣𝑖𝑘𝑙𝑚 and 𝑣𝑖 𝑗𝑘𝑚 , both composed of two points, and their
corresponding edges. (e) 𝐻𝑖𝑚 intersects the bisector 𝐻𝑖 𝑗 producing a new closed edge 𝑒𝑖 𝑗𝑚 . The presented topology update process, based on the detection of
bisector and edge invalidation, handles all these cases.

relying on recomputation when needed. In this section, we present
our data structure (Fig. 6) allowing to store the topology of a cell.

Vertices. We represent vertices by three sites indices. Benefiting
from the cell-oriented computation, we do not explicitly store the
first index of the quadruplet which is given by the cell index. Even
if our method is compatible with the direct storage of the vertices, it
requires the specific handling of the multiple solutions correspond-
ing to a given vertex. Then, we store the points individually and
differentiate them with an additional integer.

Fig. 6. Illustration of the data structure. We propose to store per-edge
vertex number instead of an explicit edge vertex adjacency, both lighter and
easier to maintain during the construction. For instance, the edge 𝑒𝑖𝑘𝑙 is
represented by the couple 𝑘 , 𝑙 , since 𝑖 is implicitly given by the cell index,
and 2, its number of vertices. We represent the two points 𝑣0

𝑖𝑘𝑙𝑚
and 𝑣1

𝑖𝑘𝑙𝑚

of the vertex 𝑣𝑖𝑘𝑙𝑚 with the triplet 𝑘 , 𝑙 , 𝑚, and a solution index 0 or 1,
allowing to differentiate them.

Edges. In affine diagrams, every edge of a given cell is incident
to two vertices. The edges can then be directly deduced from their
combinatorial structure. In Apollonius diagrams, edges may have
none to an unbounded number of vertices. Therefore, we explicitly
store edges using two indices representing the neighbors of the cell
and an additional integer for the number of incident vertices.

Bisectors. Bisectors are always bounded by edges. Thus, they are
not explicitly stored in the data structure. When required, they are
fully recovered from edge data.

Our data structure is composed of a list of edges E and of vertices
V. It does not explicitly store their adjacency relations. Indeed, edges
can be made of multiple components whose explicit storage can be
complex to maintain (Fig. 4). In particular, this connectivity is not
essential for our algorithm. Given the indices of an edge, the vertices
can be scanned to filter those adjacent. In the following sections,
we show how we can fully compute the topology of a single cell.

4.3 Initialization
The construction of any Apollonius diagrams requires the handling
of unbounded edges, which would complexify our topology update
and slow down the overall process. Since most applications use
a limited domain, we start the construction of every cell with an
initialization stage, bounding all their facets.
Previous works have shown that the set of unbounded edges is

topologically equivalent to the convex hull of the input set [Manak
and Kolingerova 2016]. We bound all cells by defining new artificial
sites such that no original site contributes to the convex hull. In
practice, we position artificial sites on the vertices of an octahedron.
We first compute the radius 𝑟𝑚𝑎𝑥 of the bounding sphere of the
input set 𝑆 and then introduce six new sites positioned on each
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axis at a distance greater than
√
3𝑟𝑚𝑎𝑥 from the sphere center. This

ensures that the octahedron shaped by artificial sites contains all
sites of the input set. We assign artificial sites radii to the minimum
radius of the input set, thus reducing the curvature of their bisectors.

4.4 Topology update
Based on the presented data structure and initialization procedure,
it remains to iteratively modify the cell topology. This sequential
method allows the construction of each cell, in parallel.
While updating the topology of a cell due to the consideration

of a new site 𝑠𝑚 ∈ 𝑆 , let A𝑡 (𝑠𝑖 ), the Apollonius cell of 𝑠𝑖 ∈ 𝑆 built
from the set of the 𝑡 first considered neighbors N𝑡 ⊂ 𝑆 \ {𝑠𝑖 }, we
define A𝑡+1 (𝑠𝑖 ) as the cell of 𝑠𝑖 considering N𝑡+1 = N𝑡 ∪ {𝑠𝑚}.
This update represents one of the main challenges of Apollonius
diagram construction since multiple cases must be taken into ac-
count (Fig. 5). These various possibilities also represent a strong
performance bottleneck due to execution divergence on GPU. Thus,
we present a method for the update of the cell after the insertion of
a new neighbor. It is based on a key observation: a new neighbor
𝑠𝑚 contributes to the cell A𝑡 (𝑠𝑖 ) if and only if there exists a sphere
tangent to 𝑠𝑖 and 𝑠𝑚 whose corresponding open ball has an empty
intersection with N𝑡 . Algorithm 1 illustrates the process.

Predicate. Our method is based on the predicate 𝑣𝑎𝑙𝑖𝑑 allowing
to test if a part of the topology A(𝜎) exists according to a weighted
site 𝑠 𝑗 . It is defined by

𝑣𝑎𝑙𝑖𝑑
(
A(𝜎), 𝑠 𝑗

)
≔ ∃𝑥 ∈ A(𝜎) s.t.

(
𝜏 (𝑥) ∩ 𝑠 𝑗

)
= ∅,

with 𝜏 (𝑥) as the largest open ball centered at 𝑥 in A(𝜎) s.t. it does
not intersect 𝜎 (Section 2). Through 𝑣𝑎𝑙𝑖𝑑 , we identify both the
invalidation of existing topology and the creation of the new ones
after the insertion of a new neighbor. App. A provides necessary
equations for the implementation of the predicate.

Vertex invalidation. We start by testing if the new neighbor 𝑠𝑚
invalidates a vertex (Fig. 5b). We find invalid vertices 𝑣𝑖 𝑗𝑘𝑙 with
𝑣𝑎𝑙𝑖𝑑 (𝑣𝑖 𝑗𝑘𝑙 , 𝑠𝑚) and decrement the vertex count of related edges
(l.2-9 of Algorithm 1). Even if the vertex count of an edge becomes
0, they are not deleted yet since they can still contribute to the cell.

New vertices. In affine diagrams construction, edge invalidation
is deduced from vertex invalidation thanks to cell convexity [Ray
et al. 2019]. When a single vertex of an edge is invalidated, it leads
to a new vertex and when two vertices of an edge are invalidated,
it is also invalidated. In Apollonius diagrams, two other cases may

Fig. 7. A complex configuration of sites with intersections of elliptic edges.

occur. An edge can be intersected by the bisector of a new neighbor
resulting in new vertices while its two original vertices are both
valid (Fig. 5c) or invalid (Fig. 5d). Then, for all edges 𝑒𝑖 𝑗𝑘 , we start by
computing the vertex 𝑣𝑖 𝑗𝑘𝑚 resulting from their intersection with

Algorithm 1: Topology update
Data: A cell A𝑡 (𝑠𝑖 ) and a new site 𝑠𝑚
Result: The updated cell A𝑡+1 (𝑠𝑖 )

1 E,V← A𝑡 (𝑠𝑖 ) ▷ Fetch cell data structure
2 forall 𝑣𝑖 𝑗𝑘𝑙 ∈ V do ▷ Vertex invalidation
3 if 𝑣𝑎𝑙𝑖𝑑 (𝑣𝑖 𝑗𝑘𝑙 , 𝑠𝑚) then
4 continue
5 Tag vertex as invalid
6 forall 𝑒𝑖 𝑗 ′𝑘 ′ ∈ E do

▷ If 𝑣𝑖 𝑗𝑘𝑙 is not on 𝑒𝑖 𝑗 ′𝑘′

7 if { 𝑗 ′, 𝑘′} ∉ { 𝑗, 𝑘, 𝑙} then
8 continue
9 Decrement the vertex count of 𝑒𝑖𝑘 ′𝑙 ′

10 E∗ ← {} ▷ Temporary pool of new edges
11 forall 𝑒𝑖 𝑗𝑘 ∈ E do ▷ Computation of new vertices

12 𝑣𝑖 𝑗𝑘𝑚 ←
(
𝐻𝑖𝑚 ∩ 𝑒𝑖 𝑗𝑘

)
▷ Validate new vertex 𝑣𝑖 𝑗𝑘𝑚

13 forall 𝑠𝑙 ∈ N𝑡 \ {𝑠 𝑗 , 𝑠𝑘 } do
14 if ¬𝑣𝑎𝑙𝑖𝑑 (𝑣𝑖 𝑗𝑘𝑚, 𝑠𝑙 ) then
15 Tag 𝑣𝑖 𝑗𝑘𝑚 as invalid
16 break
17 if 𝑣𝑖 𝑗𝑘𝑚 is valid then
18 E∗ ← E∗ ∪

{
𝑒𝑖 𝑗𝑚, 𝑒𝑖𝑘𝑚

}
19 V← V ∪

{
𝑣𝑖 𝑗𝑘𝑚

}
20 Increment the vertex count of 𝑒𝑖 𝑗𝑘

▷ Test if the edge is fully invalidated
21 if 𝑒𝑖 𝑗𝑘 is not a closed elliptic trisector then
22 continue
23 if 𝐻𝑖𝑚 ∩ 𝑒𝑖 𝑗𝑘 = ∅ ∧ ¬𝑣𝑎𝑙𝑖𝑑 (𝑒𝑖 𝑗𝑘 , 𝑠𝑚) then
24 E← E \ {𝑒𝑖 𝑗𝑘 }
25 forall 𝑠 𝑗 ∈ N𝑡 do ▷ Closed edges creation
26 𝑒𝑖 𝑗𝑚 ← 𝐻𝑖 𝑗 ∩ 𝐻𝑖𝑚

27 if 𝑠 𝑗 can contribute to a vertex with 𝑠𝑚 then
28 continue
29 if 𝑒𝑖 𝑗𝑚 is not an elliptic trisector then
30 continue

▷ Validate new edge 𝑒𝑖 𝑗𝑚
31 forall 𝑠𝑘 ∈ N𝑡 \ {𝑠 𝑗 } do
32 if ¬𝑣𝑎𝑙𝑖𝑑 (𝑒𝑖 𝑗𝑚, 𝑠𝑘 ) then
33 𝑒𝑖 𝑗𝑚 does not exist
34 break
35 if 𝑒𝑖 𝑗𝑚 exists then
36 Tag 𝑒𝑖 𝑗𝑚 as closed
37 E∗ ← E∗ ∪

{
𝑒𝑖 𝑗𝑚

}
38 Emplace in E all unique values in E∗
39 Remove all edges with no vertex from E

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



In Search of Empty Spheres: 3D Apollonius Diagrams on GPU • 7

the bisector 𝐻𝑖𝑚 . If the intersection of the open ball positioned on a
new vertex 𝜏 (𝑣𝑖 𝑗𝑘𝑚) and all previously considered neighbors in N𝑡

is empty, 𝑣𝑖 𝑗𝑘𝑚 exists in A𝑡+1 (𝑠𝑖 ) (l.11-16 of Algorithm 1). We then
append 𝑣𝑖 𝑗𝑘𝑚 to the data structure and increment the vertex count
of the edge 𝑒𝑖 𝑗𝑘 (l.17-20 of Algorithm 1). For every new vertex 𝑣𝑖 𝑗𝑘𝑚 ,
two new edges 𝑒𝑖 𝑗𝑚 and 𝑒𝑖𝑘𝑚 are also created in the cell. Since these
new edges may be shared by multiple vertices, and thus created
multiple times, we save them into a temporary pool E∗. When all
edges are processed, we identify unique values in E∗ and count their
corresponding vertices based on the number of occurrences.

Closed edges. Even if the new neighbor 𝑠𝑚 does not produce any
new vertex, it may still contribute to a new edge. One of the bi-
sectors of the current cell can be intersected resulting in a closed
edge (Fig. 5e). Such a case happens between 𝑠𝑖 , one of its neighbors
𝑠 𝑗 ∈ N𝑡 and 𝑠𝑚 if and only if they satisfy two conditions: 𝑒𝑖 𝑗𝑚 is
elliptic and no vertex is possible between 𝑒𝑖 𝑗𝑚 and any other site in
N𝑡 (l.27-30 of Algorithm 1). Then, if the intersection with an open
ball 𝜏 (𝑥 ∈ 𝑒𝑖 𝑗𝑚) and N𝑡 is empty, the edge exists, is closed, and can
be added to the cell topology. In contrast, if a closed edge 𝑒𝑖 𝑗𝑘 has
no possible vertices with 𝑠𝑚 , it may be fully invalidated. Then, if
an open ball 𝜏 (𝑥 ∈ 𝑒𝑖 𝑗𝑘 ) intersects 𝑠𝑚 , the closed edge 𝑒𝑖 𝑗𝑘 can be
removed from the data structure (l.21-24 of Algorithm 1).

After these steps, bounded edges without vertices are invalidated
and deleted. Our method, based on the detection of edge intersec-
tions, allows a uniform processing of the Apollonius cells while
handling complex structures (Fig. 7). Even if it requires a potentially
high computational cost, it allows a simple formulation while limit-
ing its memory footprint. It also makes enable the use of parallel
cooperative processing, further discussed in Section 4.6.

4.5 Spatial exploration
To update the topology efficiently, we need the subset of 𝑆 contain-
ing all contributing neighbors. We present in this section a set of
spatial exploration strategies identifying the subset of contributing
neighbors. The goal is to reduce the number of non-contributing
sites taken into account to limit the overall construction cost.

(a) Homogeneous distribu-
tion.

(b) Heterogeneous distribution.

Fig. 8. The security radius allows bounding the search for new contributing
neighbors. (a) Under homogeneous spatial distribution, the set of the near-
est neighbors corresponds to the set of contributing neighbors. (b) With
heterogeneous distributions the radius becomes large and a lot of non-
contributing neighbors must be considered. (Red: contributing neighbors,
Faded red: noncontributing neighbors).
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(b) Cells reaching security radius af-
ter the insertion of the 𝑘th nearest
neighbor.

Fig. 9. Study of the security radius and its assumptions. (a) A small number
of the nearest neighbors actually contribute to the cell. After 32 considered
nearest neighbors, few nearest neighbors are contributing, independently
from the distribution. (b) Under a heterogeneous setting, cells require to
consider more neighbors to satisfy the security radius than in a homoge-
neous setting. Some cell may need the complete input set to satisfy the
security radius if their furthest neighbor is contributing.

k-Nearest Neighbors (kNN). Previous GPU cell-oriented construc-
tion methods are based on kNN queries [Basselin et al. 2021; Ray
et al. 2019]. They make the assumption that the spatial distribution
of sites is homogeneous, thus that the set of nearest neighbors is
close to the combinatorial structure. To ensure that the cell is cor-
rect without considering all the input set, they rely on the iterative
insertion of neighbors, sorted by distance from the current site. To
limit the search, the security radius allows defining a local boundary
from the cell geometry [Lévy and Bonneel 2013]. It can be seen as
the sphere located at 𝑝𝑖 containing all open balls 𝜏 (𝑥 ∈ A𝑡 (𝑠𝑖 )). Let
𝑥𝑡𝑚𝑎𝑥 the furthest point from 𝑠𝑖 on the cell geometry is

𝑥𝑡𝑚𝑎𝑥 = argmax
𝑥∈A𝑡 (𝑠𝑖 )

𝛿 (𝑠𝑖 , 𝑥).

Then, the security radius 𝑟𝑠 can be defined as

𝑟𝑠 (A𝑡 (𝑠𝑖 )) = 2𝛿 (𝑠𝑖 , 𝑥𝑡𝑚𝑎𝑥 ) .

If the distance between 𝑠𝑖 and the 𝑡 + 1 considered nearest neigh-
bor is greater than 𝑟𝑠 (A𝑡 (𝑠𝑖 )), all open balls positioned on the cell
topology 𝜏 (𝑥 ∈ A𝑡 (𝑠𝑖 )) are within the known radius. Then, the cell
is valid according to the input set 𝑆 and no more neighbor must be
considered. In contrast with affine diagrams, the furthest point of an
Apollonius cell is not always positioned on one of its vertices but can
also be located on an edge. Notice that, while the maximum distance
to the cell is always located on a vertex with bounded hyperbolic
edges, it is not always true with elliptic edges. In such case, the
theoretical maximum distance is on the intersection between the
edge and the plane defined by the center of its three sites [Medvedev
et al. 2006]. The security radius of an Apollonius cell can thus be
estimated from its vertices and elliptic edges. This is, in practice,
always considered as is to avoid this computation even if this part
of the edge may not belong to the actual segment on the cell.

Local validation. While kNN-based strategy allows fast process-
ing of uniform distribution of sites as well as elegant bounding
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of the search from the security radius, it does not suit irregular
spatial configuration (Fig. 8). The security radius then becomes
very large and a lot of non-contributing sites must be taken into
account (Fig. 9). Independently from the distribution, the number
of the 𝑘th nearest neighbors contributing to the cell is falling dra-
matically while 𝑘 is increasing. As expected, under heterogeneous
distributions of sites, cells reach the security radius less than under
homogeneous distribution of sites, as expected. However, an affine
cell can only be modified by a new neighbor if one of its vertices
can be invalidated [Sainlot et al. 2017]. Then, we can directly vali-
date every vertex by testing if their nearest neighbors in the input
set are equivalent to their combinatorial structure, a process called
corner validation. This strategy allows an efficient spatial discovery
and limits the consideration of non-contributing sites based on the
current state of the cell. While corner validation can directly be
applied to Apollonius diagrams, it is not enough to ensure that the
computed cell is valid. Notably, curved parts of the cell may fall out
of the space covered by open balls centered on vertices, similarly
to the security radius. Thus, we define two additional search proce-
dures allowing the validation of other parts of the topology.

Apollonius edge validation. After vertex validation, parts of edges
may not be validated. Considering first bounded hyperbolic edges
(Section 4.3), the largest zone that has not been validated yet oc-
curs when both vertices are positioned at infinity. In such case, their
validated open balls are two half-spaces and the remaining zone is de-
fined by a portion of a Dupin cyclid [Olechnovič and Venclovas 2014].
In contrast, no assumption could be made from the validation of
elliptic edges without precisely identifying their set of vertices, mak-
ing their validation more complex. To simplify the search, we use
coarse bounding shapes. The hyperbolic portion of a Dupin cyclid
is approximated from the two tangent planes to the triplet of sites,
defining the half-spaces. We also use the sphere passing by four dif-
ferent points located on these planes and a site of the triplet (Fig. 10a).
A yet unconsidered site can contribute if and only if it intersects the
bounding sphere and does not intersect the half-spaces. Considering
elliptic edges, we use a bounding sphere B𝑖 𝑗𝑘 fully including all
possible open balls of the edge 𝜏 (𝑥 ∈ 𝑒𝑖 𝑗𝑘 ). Such sphere can be com-
puted from both open balls of minimum 𝜏𝑚𝑖𝑛 and maximum 𝜏𝑚𝑎𝑥

radii on the edge, located on the intersection between the edge and
the plane defined by the three sites’
centers. Its center 𝑐 is given by the
ellipse center and its radius is the
distance between 𝑐 and 𝜏𝑚𝑎𝑥 plus
the radius of 𝜏𝑚𝑎𝑥 . After edge vali-
dation, new vertices may have been
found, thus vertex validation must be
re-executed as long as new vertices
are found during edge validation.

Apollonius bisector validation. Similarly to edges, bisectors may
also contain non-validated part after previous validations. Again,
the worst case would be an infinitely large elliptic edge bounding
the current bisector. The remaining non-validated part is defined
by the intersection of all half-spaces tangent to and including both

(a) Hyperbolic edge validation.

(b) Bisector validation.

Fig. 10. Illustration of the zones required for (a) hyperbolic and (b) bisector
validation. In blue: Possibly unconsidered sites.

sites which is equivalent to their convex hull, a section of a cone
(Fig. 10b). In practice, we use a cylinder of axis (𝑝 𝑗 − 𝑝𝑖 ) and of
radius max(𝑟𝑖 , 𝑟 𝑗 ), compatible with sites of similar radii.

Acceleration structure. Previous works use an acceleration grid to
perform kNN queries on homogeneous spatial distribution [Basselin
et al. 2021; Ray et al. 2019]. This kind of structure is often selected
for their simple construction and fast performance, notably for fixed
radius queries [Hoetzlein 2014]. To perform the validation steps,
we may require large radius search leading to the processing of a
substantial number of grid cells. Additionally, since sites can have
very different radii, selecting a single cell size would result in ineffi-
cient processing across the input set. Thus, we use a BVH allowing
precise refinement of the space while searching for contributing
neighbors thanks to its hierarchy [Meister and Bittner 2022].We ben-
efit from its accurate bounding primitives, fitting high radii changes.

Our complete pipeline starts with the kNN search, which is fol-
lowed by vertex, edge and bisector validations. All stages are based
on the BVH traversal alleviating the construction cost.

4.6 Implementation details and GPU optimizations
Even if the presented process allows the computation of Apollonius
diagrams, several optimizations are required to achieve fast execu-
tion. Our implementation uses CUDA but other platform supporting
warp operations could be used. We rely on a set of specialized ker-
nels using our core topology update (Section 4.4) and focusing on a
single spatial exploration type (Section 4.5).

Pipeline configuration. Similarly to other pipelines [Basselin et al.
2021; Ray et al. 2019], our method relies on the maximum size re-
served for the cell data structure (e.g., maximum vertex or edge
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number) which may significantly vary depending on the input con-
figuration. We also allow selecting the number of nearest neighbors
considered during the first step of the spatial exploration pipeline.
Starting the construction of the cell with a small set of its nearest
neighbors may lead to strong performance speed up (Fig. 11).

Cooperative processing. Computing each cell of the diagram re-
quires a lot of tests on the combinatorial structure. Additionally, as
previous works [Basselin et al. 2021; Ray et al. 2019], we rely on
shared memory to store the cell data structure. However, Apollonius
diagrams require an explicit storage of edge information inducing a
higher cost per cell. This is notably emphasized by heterogeneous
spatial distributions, leading to more complex cell topology than
homogeneous distributions. In such context, our implementation
uses a complete warp per cell. This allows to benefit from higher
computation capabilities through cooperative processing and amore
precise distribution of the workload. Each cell also benefits from
more available shared memory, since fewer cells are stored at the
same time. Additionally, their processing can rely on the use of
warp intrinsics during the topology update for fast compaction and
reduction. Several operations over the complete cell topology are
performed by using all threads of the warp to benefit from a better
parallelization of the computation, for instance the predicate 𝑣𝑎𝑙𝑖𝑑 .

Spatial exploration. For all spatial exploration queries, we use
an LBVH [Karras 2012] for its trade-off between construction and
query performance. kNN queries are performed using a max-heap
structure [Ray et al. 2019]. Additionally, in order to avoid performing
topology validations on noncontributing neighbors, we use mul-
tiple pre-validation steps, assuring that considered neighbors are
contributing to the cell. This is notably made by approximating the
bounding shapes described in Section 4.5 with bounding spheres
allowing fast coarse intersection tests.

Precision. Since we target applications benefiting from the fast
computation of the geometry of the diagram, we do not focus on its
robustness in terms of floating point operations. However, in order
to keep accurate results, all computations are performed with 64 bits
floating point precision. This choice results in lower performance
since GPUs commonly offer less dedicated 64 bits floating operations
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Fig. 11. Relative computation time of our method using increasing number
of considered nearest neighbors before spatial validation on a site set with
spatially homogeneous (10000 sites in box of size 500 and radii between 0.1
and 10) and heterogeneous (a protein of 58870 sites, PDB Id: 1AON) distri-
butions. Performances are normalized according to the first test performed
with no considered nearest neighbor.

cores than 32 bits ones [NVIDIA 2023]. Applications willing to
increase their performance at the cost of precision could thus switch
to 32 bits floating point operations. In contrast, precision could
be improved with robust geometric predicates or more advanced
perturbation [Devillers et al. 2017]. In our experiments with our
implementation, single precision numbers allowed significant gain,
but led to multiple erroneous computation of validation zones.

5 EXPERIMENTS
In this section, we analyze our computation pipeline. All experi-
ments have been executed on the same hardware: an Intel I9-13900K
and an NVIDIA RTX 4090. We compare our method to the edge-
tracingmulti-core CPU implementation provided in Voronota [Olech-
novič and Venclovas 2014] which represents the fastest method of
the state-of-the-art. This implementation is optimized for biochemi-
cal structures but limited to edges with vertices. Benchmarks are

Proteins
Name #Site Voronota (ms) Ours (ms) Speedup
5ZCK 31 0.19 1.93 0.10 x
1AGA 126 0.72 2.72 0.27 x
3DIK 219 1.38 2.81 0.49 x
101M 1413 9.64 6.52 1.48 x
1A3F 2784 26.82 10.09 2.66 x
1A2Z 7666 73.27 20.60 3.56 x
8ID8 8635 94.82 44.85 2.11 x
7DBB 17733 212.14 112.88 1.88 x
7P3W 37149 418.13 249.99 1.67 x
7O0U 55758 604.40 487.27 1.24 x
1AON 58870 628.93 154.49 4.07 x
6QZ9 71724 904.19 454.67 1.99 x
3JC8 107640 1389.16 726.89 1.91 x
4V8W 123082 1494.57 300.00 4.98 x
7LER 158430 1964.02 425.35 4.62 x
6RXU 211834 2911.25 1507.20 1.93 x
4V6X 237685 3674.12 1705.29 2.15 x
7CGO 335722 5079.39 2424.51 2.10 x
4V60 483912 7078.91 3295.94 2.15 x
6U42 1358547 29963.55 9644.29 3.11 x

Moderate white noise (min(𝑟 ) = 1, max(𝑟 ) = 3)
Spreading #Site Voronota (ms) Ours (ms) Speedup

25 100 1.06 2.99 0.35 x
50 1000 18.64 13.09 1.42 x
250 10000 645.85 81.12 7.96 x
500 100000 9783.94 1877.00 5.21 x

White noise (min(𝑟 ) = .1, max(𝑟 ) = 10.1)
Spreading #Site Voronota (ms) Ours (ms) Speedup

100 100 1.39 2.93 0.47 x
200 1000 31.00 16.57 1.87 x
500 10000 914.27 205.07 4.46 x
1000 100000 30393.90 8160.00 3.72 x

Table 2. Benchmarks of our method compared to Voronota [Olechnovič
and Venclovas 2014]. Experiments were performed with 10 unconsidered
warmup samples and with the mean of 100 iterations. We present GPU
timings of our method and Voronota uses the 32 cores of the CPU.
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Fig. 12. Per stage computation time with proteins (first four rows) and homogeneous spatial distribution (last four rows). Timings in milliseconds represent
the mean of 100 iterations after 10 warm up iterations, unconsidered.

then targeting two main use cases: uniform and heterogeneous
spatial distributions of sites, from the following three datasets:

• Proteins, 𝑟𝑖 ∈ [1.5, 2.4]: assumptions made with the security
radius are not satisfied, few elliptic edges occur;
• Moderate white noise, 𝑟𝑖 ∈ [1, 3]: assumptions made with the
security radius are mostly satisfied, few elliptic edges occur;
• White noise, 𝑟𝑖 ∈ [0.1, 10]: assumptions made with the secu-
rity radius are mostly satisfied, more elliptic edges occur.

Protein files are obtained from the Protein Data Bank (PDB) [Berman
et al. 2000]. We configure our pipeline with global empirical settings
allowing the computation of all test cases without parameter change:

• a single pass considering the 16 nearest neighbors (Fig. 11);
• a maximum of 264 edges and 152 vertices allowing to handle
the complete heterogeneous dataset.

We emphasize that these settings and our implementation mainly
target comprehensive computation in a general use case, using all
available shared memory on the target GPU. Better performance
could be reached by manually tuning the parameters depending on
the application and the targeted hardware. Notably, shared memory
consumption can limit the number of warp running in parallel.
Targeting homogeneous distribution only would allow reducing
the necessary memory space for the data structure thanks to less
complex cell geometry, as previous works [Basselin et al. 2021; Ray
et al. 2019]. All input sets are perturbed using random values [O’Neill
2014] between

[
−1𝑒−3, 1𝑒−3

]
ensuring general position.
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Fig. 13. Memory consumption of our method on the three datasets (Table 2).
It is linearly dependent to the number of sites in the input set which directly
results from the cell-oriented computation.

5.1 Performance
Table 2 presents performance benchmarks. All experiments were
performed by executing both computation pipelines completely.
Considering our method, this includes the complete construction of
individual cells. Depending on the application, additional operations
(merging to store the diagram, explicit computation of bisectors,
...) may be required and could add an additional minor cost. To
extract Voronota’s computed combinatorial structure, we rely on
the performance setup provided in the library [Olechnovič and
Venclovas 2014] which performs the complete parallel computation
of the diagram’s vertices with OpenMP.

Our method performs two times faster in average while allowing
the comprehensive construction of the diagram. This is in contrast
with Voronota which only outputs the vertices and the connected
skeleton. This performance speedup is notably observed under het-
erogeneous spatial distribution, even if it represents the target of
Voronota. We also note that both methods require more computa-
tion time with homogeneous distribution compared to the protein
dataset with a similar number of sites. For instance, Voronota’s per-
formances are seven times slower under the moderate white noise
configuration with 100000 sites compared to the protein 3JC8. In
contrast, our method is only impacted by a factor of three. This is
notably due to the increased number of elliptic edges, linked to high
radii changes. This observation is confirmed at an increased range
of radii, that strengthen the chances for a site to be included within
the convex hull of two others.
Fig. 12 provides per stage computation time for several samples

in all benchmarks datasets. We first notice that the most consuming
stage is the edge validation representing at least half of the compu-
tation time for most samples. This is due to our handling of elliptic
edges using their bounding sphere, a coarser approximation than
other types of validation. Again, this is emphasized under homoge-
neous distribution. Other stages are performed in less computation
time thanks to their precise bounding shapes.
Finally, Fig. 13 gives a benchmark of the memory consumption.

Thanks to the cell-oriented computation, its consumption is linearly
growing according to the number of sites, independently from the
spatial distribution. This is especially interesting to support large
sets of sites, benefiting from reduced computation time.
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Even if our implementation does not target provably robust com-
putation, Table 4 provides performance results of our method com-
pared to Voronota on a robustness dataset [Song et al. 2022] which
confirm the observation made on our three datasets.
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Fig. 15. Study of the compared methods output geometry (Robust [Du
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structure, which is closer to the point. Closed trisectors are validated using
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(a) Two cases (left: Vis_III_5, right: 1000-50-2-1) where Voronota do not
recover the complete topology due to closed elliptic edges (in blue).

(b) Two missing vertices in Voronota’s and our method’s topologies (1AGA).

Fig. 16. Illustration of the mesh produced by Du et al.’s method [Du et al.
2022] and the components differing from Du et al. (in blue) in Voronota’s
and our method’s produced topology.

5.2 Validation
We further evaluate our method from the quality of the produced
topology and geometry. Du et al. introduced an algorithm comput-
ing implicit surface networks through discretized samples [Du et al.
2022]. It is able to build a combinatorial structure of an Apollonius
diagram but is limited by the precision of the input values as well
as its memory consumption. Fig. 14 provides the number of missing
bisectors, trisectors and quadrisectors in the combinatorial struc-
ture computed by Voronota [Olechnovič and Venclovas 2014] and
our method in comparison with the output of Du et al.’s method
configured with a high resolution 1003 grid [Du et al. 2022]. Due to
memory restriction, we provide this analysis for all cases composed
of less than 6000 sites in all datasets. We extract the topology com-
puted by our method by saving a component of a cell if the index
of the cell is the smallest combinatorial index of the component. In
contrast, we compute Voronota’s topology from the combinatorial
structure of the produced vertices.

First, we notice that bisectors and trisectors computation errors of
our method is constantly lower than Voronota’s which is unable to
compute elliptic edges without vertices (Fig. 16a). These results show
that both our construction process and our data structure support a
wider range of cases. Notably, this is emphasized in several complex
cases in Song et al.’s dataset (Vis_III_5, ANO_2_0_CONNECT) and
the random cloud samples (1000-50-2-1, 1000-200-10-0.1) in a direct
dependency with the number of sites and the scale of radii. This
illustrates the quality of our closed edges handling, more likely to
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Fig. 17. Illustration of an application of Apollonius diagrams to molecular graphics. Vertices are computed with our method and filtered based on their
visibility. They are then used to position lights suggesting the cavities and emphasizing the molecular structure. The understanding of the shape of the large
structures is especially improved in this setup.

occur in these configurations. Both our method’s and Voronota’s
outputs may differ strongly from the output of Du et al.’s method
in complex cases (Fig. 16b) due to the piecewise linear assumption.
To precisely measure the quality of the output geometry, we

finally test each method’s outputs using interval arithmetic. We
start by computing the distance between the output components
and their combinatorial structure. Then, we test for the existence of
a closer site in the input set. Fig. 15 reports percentages of invalid
components. Our method is the only one to explicitly provide the
closed edges of the diagram. We validate these edges by ensuring
that the point 𝜏𝑚𝑖𝑛 (Section 4.5), minimizing the distance to the
combinatorial structure, is not closer to any other site. As illustrated,
the linear approximation performed by Du et al.’s method [Du
et al. 2022] may result in invalid geometry. In contrast, no invalid
vertices produced by Voronota were observed in the presented cases.
Our method’s outputs are also almost always valid. We notice that
it can produce invalid vertices in the most complex cases of the
dataset (Ext_I_Congruent_300, Ext_II_Polysized_300). More robust
predicate could allow a better handling of such configurations.

6 APPLICATIONS TO MOLECULAR GRAPHICS
Molecular illustration represents a challenge to support the commu-
nication of research notably through popularization [Johnston 2023;
Slater et al. 2022]. Several works have shown that Voronoi diagrams
can be used to enhance molecular illustrations by highlighting inter-
esting structures [Lindow et al. 2011]. Molecular studies are, how-
ever, intrinsically depending on the precision level of the Voronoi
diagram of the atomic structure. Then, Apollonius diagrams have
been shown as better suited for these applications than the Voronoi
diagram of atoms centers [Goede et al. 1997; Olechnovič et al. 2010;
Yaffe et al. 2008]. Notably, they allow a better estimation of atomic
cavities, known for their biochemical meaning [Krone et al. 2016].

Representing vertices hidden within the structure as lights allows
to suggest the potential cavities (Fig. 17). We then present in this
section an application of our method for the illustration of large

molecular systems, strongly benefiting from reduced computation
time. We start by computing the Apollonius diagram and extract
vertices. We then filter these vertices based on several parameters.

Vertex extraction. Starting from the presented cell-oriented data
structure, we first extract a set of unique vertices since they are
shared by multiple cells. This is made by saving the points of a
vertex if its smallest index is the index of the current cell.

Filtering. Since we focus on the
suggestion of hidden structures
in the molecular body, we need
to compute a burial level for a
given vertex point. Lindow et al.
identified that this can be approx-
imated similarly to ambient occlu-
sion [Lindow et al. 2011; Zhukov
et al. 1998]. Thus, for every vertex
point, we launch a set of 64 rays uniformly distributed on a sphere
and compute a ratio from the number of rays hitting one of the
sites. To further reduce the number of points, we additionally allow
filtering them from their distance to their corresponding sites. As
many points are located in a narrow location, this improves the
refinement to interesting areas.

Fig. 17 provides an illustration of several molecular systems with
lights positioned on the filtered vertices. We can notice that cavities
are correctly hinted from their illumination and support the un-
derstanding of the molecular body. This is especially true for large
systems which interesting areas are more difficult to notice. Finally,
Table 3 gives the performance of every stage. It suggests that the
method supports the interactive visualization of large molecular
systems and that it strongly benefits from GPU execution. Such
systems could be integrated within illustration software allowing
to automatically highlight the shape of the studied systems.
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PDB Id #Site #Vertex Vertices Hit ratio Filtering
7P3W 37149 253431 248.58 5.84 0.13
4V8W 123082 838101 303.32 18.42 0.19
7LER 158430 1077978 429.56 23.1 0.3
6RXU 211834 1450141 1418.74 33.01 0.24
4V6X 237685 1646763 1720.43 37.53 0.24

Table 3. Performance of the cavity enhancement procedure. Vertices section
includes computation of the complete diagram and compaction of vertices
while Hit Ratio section includes the complete tracing of all vertices. All stage
times are given in milliseconds.

7 LIMITATIONS AND FUTURE WORKS
Our pipeline targets standard applications of Apollonius diagrams
and is planned to be more flexible than previous methods. However,
several properties could be improved.

First, despite our light data structure (Section 4.2), specific cases
could lead to complex geometry, causing potential GPU memory
overflow. To address this issue, a CPU fallback is commonly consid-
ered [Basselin et al. 2021; Ray et al. 2019].

Second, even if our method allows a comprehensive construction
thanks to our construction method (Section 4.4), it does not include
exact predicates and relies on perturbations to ensure general po-
sition. Investigation for robust predicates on GPU could address
various needs for combinatorial information of Apollonius diagrams.

Third, the elliptic edges validation rely on their bounding sphere
to avoid analyzing per-edge set of vertices. Even if this coarse ap-
proximation allows fast tests, more precise bounding volumes could
represent a possible improvement in terms of performance.
Fourth, numerical errors may be observed during the validation

of very large bounding spheres. To ensure the termination of the
algorithm, we fixed the maximum number of validation steps to 10
in our implementation. More precise restriction of the diagram and
more robust predicate could allow a better handling of these cases.
Fifth, we selected several parameters for the allocation of the

data structure allowing to fully handle our test dataset. However, it
can lead to unoptimal settings. An automatic computation of these
parameters could improve the compatibility of our method.

Finally, our method features faster computation compared to pre-
vious works. Further progress could, however, be made by targeting
dedicated GPU optimizations of the meshless framework. A better
distribution of the workload can notably help to uniformize the
processing, while a reduction of register and shared memory usage
could allow more warps to run in parallel. Such optimizations could
especially benefit to the processing of heterogeneous distributions.

8 CONCLUSION
We present a comprehensive computation method of the Apollonius
diagram in R3 adapted to the GPU. Thanks to a dedicated compu-
tation pipeline, our strategy allows to handle both homogeneous
and heterogeneous spatial distributions of sites. We show that it
outperforms the fastest state-of-the-art method while allowing a
complete construction of the cells. This addresses a significant need

in various application fields for the systematic construction of Apol-
lonius cells. As an example, we demonstrate its usability for the
illustration of molecular systems.
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Name #Site Voronota (ms) Ours (ms) Speedup
BALL_1_1_10000 10000 132.95 16.72 7.95 x
BALL_1_1_20000 20000 275.44 31.22 8.82 x
BALL_1_1_30000 30000 365.12 45.65 8.00 x
BALL_1_1_40000 40000 595.72 60.28 9.88 x
BALL_1_1_50000 50000 648.16 74.64 8.68 x
BALL_1_1_60000 60000 819.59 89.55 9.15 x
BALL_1_1_70000 70000 989.60 104.43 9.48 x
BALL_1_1_80000 80000 1194.53 118.27 10.10 x
BALL_1_1_90000 90000 1184.07 132.32 8.95 x
BALL_1_1_100000 100000 1347.72 147.13 9.16 x
BALL_1_2_10000 10000 178.49 67.47 2.65 x
BALL_1_2_20000 20000 396.58 191.85 2.07 x
BALL_1_2_30000 30000 548.95 221.52 2.48 x
BALL_1_2_40000 40000 870.26 322.65 2.70 x
BALL_1_2_50000 50000 973.19 487.62 2.00 x
BALL_1_2_60000 60000 1292.13 428.48 3.02 x
BALL_1_2_70000 70000 1542.65 557.39 2.77 x
BALL_1_2_80000 80000 1873.27 568.06 3.30 x
BALL_1_2_90000 90000 1811.82 658.68 2.75 x
BALL_1_2_100000 100000 2130.34 844.65 2.52 x
BALL_1_5_10000 10000 392.60 133.79 2.93 x
BALL_1_5_20000 20000 994.66 345.37 2.88 x
BALL_1_5_30000 30000 1609.12 468.82 3.43 x
BALL_1_5_40000 40000 2320.87 609.64 3.81 x
BALL_1_5_50000 50000 2960.44 962.32 3.08 x
BALL_1_5_60000 60000 3598.05 1296.68 2.77 x
BALL_1_5_70000 70000 4611.46 1516.61 3.04 x
BALL_1_5_80000 80000 5898.28 2083.70 2.83 x
BALL_1_5_90000 90000 5903.36 2285.13 2.58 x
BALL_1_5_100000 100000 7039.21 2591.04 2.72 x
BALL_1_10_10000 10000 759.97 144.96 5.24 x
BALL_1_10_20000 20000 2177.13 366.47 5.94 x
BALL_1_10_30000 30000 3372.43 622.71 5.42 x
BALL_1_10_40000 40000 5090.46 952.52 5.34 x
BALL_1_10_50000 50000 7449.66 1378.77 5.40 x
BALL_1_10_60000 60000 8949.87 2131.36 4.20 x
BALL_1_10_70000 70000 11060.81 2295.69 4.82 x
BALL_1_10_80000 80000 13436.33 2854.91 4.71 x
BALL_1_10_90000 90000 16038.38 3678.57 4.36 x
BALL_1_10_100000 100000 19519.90 4119.86 4.74 x
Ext_I_Congruent_300 300 18.65 10.60 1.76 x
Ext_II_Polysized_300 300 10.60 12.69 0.83 x

Name #Site Voronota (ms) Ours (ms) Speedup
BALL_SMALL_1000 1000 27.78 10.09 2.75 x
BALL_SMALL_2000 2000 58.95 19.13 3.08 x
BALL_SMALL_3000 3000 108.73 28.73 3.78 x
BALL_SMALL_4000 4000 181.82 53.08 3.43 x
BALL_SMALL_5000 5000 229.25 47.56 4.82 x
BALL_SMALL_6000 6000 303.46 76.49 3.97 x
BALL_SMALL_7000 7000 396.37 85.83 4.62 x
BALL_SMALL_8000 8000 498.33 99.33 5.02 x
BALL_SMALL_9000 9000 590.85 124.93 4.73 x
BALL_SMALL_10000 10000 767.61 145.36 5.28 x
BALL_SMALL_11000 11000 843.84 169.20 4.99 x
BALL_SMALL_12000 12000 1054.06 180.95 5.83 x
BALL_SMALL_13000 13000 1172.59 212.43 5.52 x
BALL_SMALL_14000 14000 1317.50 271.90 4.85 x
BALL_SMALL_15000 15000 1546.33 239.55 6.46 x
BALL_SMALL_16000 16000 1754.37 244.63 7.17 x
BALL_SMALL_17000 17000 1873.64 252.29 7.43 x
BALL_SMALL_18000 18000 2102.28 312.85 6.72 x
BALL_SMALL_19000 19000 2310.31 325.94 7.09 x
BALL_SMALL_20000 20000 2160.31 366.06 5.90 x
BALL_SMALL_21000 21000 2478.50 399.71 6.20 x
BALL_SMALL_22000 22000 2398.47 438.21 5.47 x
BALL_SMALL_23000 23000 2670.94 505.26 5.29 x
BALL_SMALL_24000 24000 3054.86 520.94 5.86 x
BALL_SMALL_25000 25000 3187.04 466.87 6.83 x
BALL_SMALL_26000 26000 3372.50 527.42 6.39 x
BALL_SMALL_27000 27000 3327.13 611.58 5.44 x
BALL_SMALL_28000 28000 3509.32 593.65 5.91 x
BALL_SMALL_29000 29000 3732.42 672.92 5.55 x
BALL_SMALL_30000 30000 3376.36 621.96 5.43 x
ANO1_0CONNECT 7 7.97 1.09 7.31 x
ANO2_0CONNECT 8 0.03 1.14 0.03 x
ANO3_3CONNECT 9 0.03 1.17 0.02 x
ANO4_4CONNECT 8 0.02 1.15 0.02 x

Vis_I_10 10 0.05 1.14 0.04 x
Vis_II_5 9 0.04 1.14 0.03 x
Vis_III_5 9 0.04 1.19 0.03 x
Vis_IV_60 60 0.75 2.06 0.36 x
Vis_V_20 20 0.09 1.50 0.06 x
Vis_VI_6 6 1.58 1.05 1.49 x
Vis_VII_20 20 1.74 1.73 1.01 x

Table 4. Benchmarks of our method compared to Voronota [Olechnovič and Venclovas 2014] on the robustness dataset [Song et al. 2022]. The set of proteins
provided in the dataset has been omitted in favor of the larger one presented in this paper. Performances are evaluated similarly to Table 2.
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A VALID PREDICATE IMPLEMENTATION
The implementation of our predicate requires two geometric infor-
mation: vertex points and closed elliptic edge boundaries.

As shown byAurenhammer [Aurenhammer 1987] and by Boisson-
nat and Karavelas [Boissonnat and Karavelas 2003], an Apollonius
cell in R𝑑 of a site 𝑠𝑖 = (𝑝𝑖 , 𝑟𝑖 ) can be seen as the projection on
R𝑑 × {∅} of the intersection between the cone Γ𝑖 of axis 𝑥𝑑+1 and
the Power cell of the site 𝑠𝑖 = (𝑠𝑖 ,

√
2𝑟𝑖 ). Γ𝑖 is then given by

Γ𝑖 B
{
𝑥 = (𝑥, 𝑥𝑑+1) ∈ R𝑑+1 | 𝑥𝑑+1 + 𝑟𝑖 = | |𝑥 − 𝑝𝑖 | |

}
, (3)

while Power bisectors Π2
𝑖 𝑗
of the cell P(𝑠𝑖 ) are characterized by

Π2
𝑖 𝑗 B

{
𝑥 = (𝑥, 𝑥𝑑+1) ∈ R𝑑+1 | 𝑥 · 𝑛̃ + 𝑐𝑖 𝑗 = 0

}
,

with 𝑛̃ = 𝑠 𝑗 − 𝑠𝑖 and 𝑐𝑖 𝑗 = 1
2 ( | |𝑝𝑖 | |

2 − 𝑟2
𝑖
− ||𝑝 𝑗 | |2 + 𝑟2𝑗 ). These results

allow characterizing Apollonius diagrams components.
Let 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ R4 and the four weighted sites 𝑠𝑖 , 𝑠 𝑗 ,

𝑠𝑘 and 𝑠𝑙 . The Apollonius vertex 𝑣𝑖 𝑗𝑘𝑙 is given by the intersection
between the hyperplanes Π2

𝑖 𝑗
, Π2

𝑖𝑘
and Π2

𝑖𝑙
with Γ𝑖 . The intersection

Π2
𝑖 𝑗
∩ Π2

𝑖𝑘
∩ Π2

𝑖𝑙
must then satisfy

𝑥1𝑛𝑖 𝑗,1 + 𝑥2𝑛𝑖 𝑗,2 + 𝑥3𝑛𝑖 𝑗,3 + 𝑥4𝑛𝑖 𝑗,4 + 𝑐𝑖 𝑗 = 0
𝑥1𝑛𝑖𝑘,1 + 𝑥2𝑛𝑖𝑘,2 + 𝑥3𝑛𝑖𝑘,3 + 𝑥4𝑛𝑖𝑘,4 + 𝑐𝑖𝑘 = 0
𝑥1𝑛𝑖𝑙,1 + 𝑥2𝑛𝑖𝑙,2 + 𝑥3𝑛𝑖𝑙,3 + 𝑥4𝑛𝑖𝑙,4 + 𝑐𝑖𝑙 = 0

These equations can be expressed as a matrix resulting in

©­«
𝑥2
𝑥3
𝑥4

ª®¬ = −𝐴−1 ©­«
𝑛𝑖 𝑗,1
𝑛𝑖𝑘,1
𝑛𝑖𝑙,1

ª®¬𝑥1 −𝐴−1 ©­«
𝑐𝑖 𝑗
𝑐𝑖𝑘
𝑐𝑖𝑙

ª®¬
⇔ ©­«

𝑥2
𝑥3
𝑥4

ª®¬ = 𝑁𝑥1 + 𝑏.

Changing the coordinates to 𝑥 ′ = (𝑥 − 𝑝𝑖 , 𝑥4 + 𝑟𝑖 ) results in©­«
𝑥 ′2
𝑥 ′3
𝑥 ′4

ª®¬ = 𝑁𝑥 ′1 + 𝑒 with 𝑒 =
©­«
𝑒1
𝑒2
𝑒3

ª®¬ = ©­«
𝑁1𝑝𝑖,1 + 𝑏1 − 𝑝𝑖,2
𝑁2𝑝𝑖,1 + 𝑏2 − 𝑝𝑖,3
𝑁3𝑝𝑖,1 + 𝑏3 + 𝑟𝑖

ª®¬ .
Finally, this expression can be inserted in the equation of Γ𝑖 (3)

𝑥 ′21 + (𝑁1𝑥
′
1 + 𝑒1)

2 + (𝑁2𝑥
′
1 + 𝑒2)

2 = (𝑁3𝑥
′
1 + 𝑒3)

2

⇔ 𝑥 ′21 𝐸 + 2𝑀𝑥 ′1 = 𝑒23 − 𝑒
2
1 − 𝑒

2
2,

with 𝐸 = 1 + 𝑁 2
1 + 𝑁

2
2 − 𝑁 2

3 and 𝑀 = 𝑁1𝑒1 + 𝑁2𝑒2 − 𝑁3𝑒3. The
resulting quadratic expression has none to two solutions.
As noticed by Medvedev et al., the minimum and maximum of

an Apollonius edge 𝑒𝑖 𝑗𝑘 are given by the intersection of 𝑒𝑖 𝑗𝑘 and
the plane passing through the points 𝑝𝑖 , 𝑝 𝑗 and 𝑝𝑘 [Medvedev et al.
2006]. Similarly to vertex points, they can be obtained by solving{

𝑥 · 𝑛̃𝑖 𝑗 + 𝑐𝑖 𝑗 = 𝑥 · 𝑛̃𝑖𝑘 + 𝑐𝑖𝑘 = 𝑥 · 𝑛̃𝑖 𝑗𝑘 + 𝑐𝑖 𝑗𝑘 = 0
| |𝑥 − 𝑝𝑖 | | = 𝑥𝑑+1 + 𝑟𝑖 ,

with

𝑛̃𝑖 𝑗𝑘 =

( (𝑝 𝑗 − 𝑝𝑖 ) × (𝑝𝑘 − 𝑝𝑖 )
| | (𝑝 𝑗 − 𝑝𝑖 ) × (𝑝𝑘 − 𝑝𝑖 ) | |

, 0
)𝑇

and 𝑐𝑖 𝑗𝑘 = −(𝑛𝑖 𝑗𝑘 · 𝑝𝑖 ).

Since the resulting equations give only one point if the edge is open
and two points otherwise, we can also rely on the number of its
valid solutions to assert the type of the edge.
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